「AI Drive」是由 PaperWeekly 和 biendata 共同发起的学术直播间,旨在帮助更多的青年学者宣传其最新科研成果。我们一直认为,单向地输出知识并不是一个最好的方式,而有效地反馈和交流可能会让知识的传播更加有意义,从而产生更大的价值。
本期 AI Drive,我们邀请到清华大学交叉信息研究院博士生滕佳烨,为大家在线解读其发表于 ICML 2021 的最新工作:T-SCI: A Two-Stage Conformal Inference Algorithm with Guaranteed Coverage for Cox-MLP。对本期主题感兴趣的小伙伴,7 月 20 日(周二)晚 7 点,我们准时相约 PaperWeekly B 站直播间。
直播信息
在删失数据中,我们只能得到生存时间的不完全信息,而不能得到生存时间的确切值。幸运的是,在线性假设下,人们可以使用 Cox 回归等方法获得生存时间的区间估计。然而,当使用神经网络放松线性假设时(如 Cox-MLP),该区间估计将失去理论保证。
为了在没有线性假设的情况下重新获得有理论保证的区间估计,我们提出了两种基于共形预测的算法。在第一个算法 WCCI 中,我们重新考虑加权共形预测,并引入一个新的基于部分似然的 score。而后我们提出了两阶段共形预测算法 T-SCI,其中我们在第一阶段运行 WCCI,并应用分位数共形推理来校准第二阶段的结果。理论分析表明,与 WCCI 相比,在较温和的假设下,T-SCI 能够得到几乎完美的覆盖保证。我们用不同的方法对模拟数据和真实数据进行实验,从而验证了我们的分析。
论文标题:
T-SCI: A Two-Stage Conformal Inference Algorithm with Guaranteed Coverage for Cox-MLP
论文链接:
https://arxiv.org/abs/2103.04556
本次分享的具体内容有:
背景介绍:对 Cox-MLP 模型与共形预测的基本介绍
研究动机:对 T-SCI 算法的介绍
理论结果:为该算法提供理论上界与下界的保证
实验结果:展示在模拟数据集与现实数据集中的实验结果
工作总结:总结与展望
嘉宾介绍
滕佳烨 / 清华大学博士生
滕佳烨,清华大学交叉信息研究院一年级博士生,导师为袁洋助理教授。主要研究方向是神经网络泛化理论,以及统计理论与机器学习的结合,包括因果推断、共形预测等。
直播地址 & 交流群
本次直播将在 PaperWeekly B 站直播间进行,扫描下方海报二维码或点击阅读原文即可免费观看。线上分享结束后,嘉宾还将在直播交流群内实时 QA,在 PaperWeekly 微信公众号后台回复「AI Drive」,即可获取入群通道。
B 站直播间:
https://live.bilibili.com/14884511
合作伙伴
????
现在,在「知乎」也能找到我们了
进入知乎首页搜索「PaperWeekly」
点击「关注」订阅我们的专栏吧
关于PaperWeekly
PaperWeekly 是一个推荐、解读、讨论、报道人工智能前沿论文成果的学术平台。如果你研究或从事 AI 领域,欢迎在公众号后台点击「交流群」,小助手将把你带入 PaperWeekly 的交流群里。