视觉Transformer中ReLU替代softmax,谷歌大脑一招降速!

来源:机器之心

Transformer 架构已经在现代机器学习领域得到了广泛的应用。注意力是 transformer 的一大核心组件,其中包含了一个 softmax,作用是产生 token 的一个概率分布。softmax 有较高的成本,因为其会执行指数计算和对序列长度求和,这会使得并行化难以执行。

Google DeepMind 想到了一个新思路:用某种不一定会输出概率分布的新方法替代 softmax 运算。他们还观察到:在用于视觉 Transformer 时,使用 ReLU 除以序列长度的注意力可以接近或匹敌传统的 softmax 注意力。

c401e0eeb28825599eb64896b3288217.png

论文:https://arxiv.org/abs/2309.08586

这一结果为并行化带来了新方案,因为 ReLU 注意力可以在序列长度维度上并行化,其所需的 gather 运算少于传统的注意力。

方法

注意力

注意力的作用是通过一个两步式流程对 d 维的查询、键和值 {q_i, k_i, v_i} 进行变换。

在第一步,通过下式得到注意力权重 f96ac2a28d950931a4e55ceafff0a73b.png

d3d3caf12665a7d39fa1629b367c4bba.png

其中 ϕ 通常是 softmax。

下一步,使用这个注意力权重来计算输出deffd88033b7825998c8eb838630077a.png 这篇论文探索了使用逐点式计算的方案来替代 ϕ。

ReLU 注意力

DeepMind 观察到,对于 1 式中的 ϕ = softmax,58ec6f4b28d07983589658b26ee3caf9.png是一个较好的替代方案。他们将使用 aa43d697a19db0980daa765e10bc1eac.png的注意力称为 ReLU 注意力。

已扩展的逐点式注意力

研究者也通过实验探索了更广泛的 5525235d5e7beaf78c74960ec96c4b03.png 选择,其中 α ∈ [0, 1] 且 h ∈ {relu,relu² , gelu,softplus, identity,relu6,sigmoid}。

序列长度扩展

他们还观察到,如果使用一个涉及序列长度 L 的项进行扩展,有助于实现高准确度。之前试图去除 softmax 的研究工作并未使用这种扩展方案。

在目前使用 softmax 注意力设计的 Transformer 中,有 a9a89378b306da97ea55b630eb3500e9.png ,这意味着 4e520bc933eaacd0c617550085904b5d.png 尽管这不太可能是一个必要条件,但 6c5fa936d635cd48ad0a7ef53b21fec7.png能确保在初始化时 ad9459e4772f1ebb11114e5e9ac104fa.png 的复杂度是 5e3b3a8e079a8c8f52b68874ca4cfa42.png ,保留此条件可能会减少替换 softmax 时对更改其它超参数的需求。

在初始化的时候,q 和 k 的元素为 O (1),因此 04668b73f938f754ae04b0c9278046eb.png 也将为 O (1)。ReLU 这样的激活函数维持在 O (1),因此需要因子3b102105e30078ca471f311205b1549e.png才能使 a7c47ffdfcf896decb037ad1c0ef6975.png 的复杂度为  7467ff8cb0bcefa763a4ae7a1152b6a9.png

实验与结果

主要结果

图 1 说明在 ImageNet-21k 训练方面,ReLU 注意力与 softmax 注意力的扩展趋势相当。X 轴展示了实验所需的内核计算总时间(小时)。ReLU 注意力的一大优势是能在序列长度维度上实现并行化,其所需的 gather 操作比 softmax 注意力更少。

17fbf60cac28f8aaaffd908dbae84ff2.png

序列长度扩展的效果

图 2 对比了序列长度扩展方法与其它多种替代 softmax 的逐点式方案的结果。具体来说,就是用 relu、relu²、gelu、softplus、identity 等方法替代 softmax。X 轴是 α。Y 轴则是 S/32、S/16 和 S/8 视觉 Transformer 模型的准确度。最佳结果通常是在 α 接近 1 时得到。由于没有明确的最佳非线性,所以他们在主要实验中使用了 ReLU,因为它速度更快。

60881962f7dc9b71f9582f41cefaed33.png

qk-layernorm 的效果

主要实验中使用了 qk-layernorm,在这其中查询和键会在计算注意力权重前被传递通过 LayerNorm。DeepMind 表示,默认使用 qk-layernorm 的原因是在扩展模型大小时有必要防止不稳定情况发生。图 3 展示了移除 qk-layernorm 的影响。这一结果表明 qk-layernorm 对这些模型的影响不大,但当模型规模变大时,情况可能会不一样。

84856c8da7278f8ff65f028a835a4a2f.png

添加门的效果

先前有移除 softmax 的研究采用了添加一个门控单元的做法,但这种方法无法随序列长度而扩展。具体来说,在门控注意力单元中,会有一个额外的投影产生输出,该输出是在输出投影之前通过逐元素的乘法组合得到的。图 4 探究了门的存在是否可消除对序列长度扩展的需求。总体而言,DeepMind 观察到,不管有没有门,通过序列长度扩展都可以得到最佳准确度。也要注意,对于使用 ReLU 的 S/8 模型,这种门控机制会将实验所需的核心时间增多大约 9.3%。

6ea48a1f844107f1968501641792b98d.png

推荐阅读

欢迎大家加入DLer-计算机视觉技术交流群!

大家好,群里会第一时间发布计算机视觉方向的前沿论文解读和交流分享,主要方向有:图像分类、Transformer、目标检测、目标跟踪、点云与语义分割、GAN、超分辨率、人脸检测与识别、动作行为与时空运动、模型压缩和量化剪枝、迁移学习、人体姿态估计等内容。

进群请备注:研究方向+学校/公司+昵称(如图像分类+上交+小明)

80f4355ead2898b0a59ab40845fe0f8f.jpeg

👆 长按识别,邀请您进群!

b3fa1f304e3b6ca6c64848688949e4b4.gif

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值