下标表示法和曲面坐标系



   最近在学《电磁场与电磁波》,其中应用到了爱因斯坦标记法(Einstein notation),以简便地表示向量运算; 对于有别于直角坐标系的曲面坐标系(curvilinear coordinates),梯度(gradient)、旋度(curl)和散度(divergence)的表达式也不尽相同,但仍可通过拉梅系数统一。


下标表示法1

在课程中,爱因斯坦标记法主要指一种对向量的下标表示法,且对于标量 C C C,其表示仍为 C C C



异名下标的遍历作用

对于向量 B \bm{B} B,则用 b i b_i bi 进行表示,意义为 b i = ∑ i = 1 3 b i e i ⃗ = [ b 1 b 2 b 3 ] b_i = \sum_{i = 1}^{3}b_i\vec{e_i} = \begin{bmatrix} b_{1}\\b_{2}\\b_{3} \end{bmatrix} bi=i=13biei =b1b2b32

对于 A i j A_{ij} Aij,则可以表示一个 3 × 3 3×3 3×3的的矩阵,即 A i j = ∑ i = 1 3 ∑ j = 1 3 a i j e i j ⃗ = [ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] A_{ij} = \sum_{i = 1}^{3}\sum_{j=1}^{3}a_{ij}\vec{e_{ij}}=\begin{bmatrix}a_{11} \quad a_{12} \quad a_{13} \\ a_{21} \quad a_{22} \quad a_{23} \\ a_{31} \quad a_{32} \quad a_{33}\end{bmatrix} Aij=i=13j=13aijeij =a11a12a13a21a22a23a31a32a33

可以认为 每一个下标的存在对应着 3个状态(带位置属性),若有 N个下标,则就有分布在 N维上的 3 N 3^N 3N个元素,异名下标起到了遍历作用。

对于两个向量 U \bm{U} U V \bm{V} V 的相加,结果为向量 W \bm{W} W ,就有 u i + v i = w i u_i + v_i =w_i ui+vi=wi,属于遍历性逐项相加的过程。

同名下标的求和作用

当在一个积式中出现两个相同的下标时,就意味着相加求和,这是重要的一个规则。如对于两个向量 U \bm{U} U V \bm{V} V 的点积,结果为标量 W,就有:

W = U \bm{U} U · V \bm{V} V = ∑ i = 1 3 u i e i ⃗ ⋅ ∑ i = 1 3 v i e i ⃗ = ∑ i = 1 3 u i v i = u i v i \sum_{i =1}^{3}u_i\vec{e_i} · \sum_{i =1}^{3}v_i\vec{e_i} =\sum_{i=1}^{3}u_i v_i = u_i v_i i=13uiei i=13viei =i=13uivi=uivi

值得注意的是,区分三组式子:


∂ f i ∂ x i = ∂ ∑ i = 1 3 f i e i ⃗ ∂ ∑ i = 1 3 x i e i ⃗ = ∑ i = 1 3 ∂ f i ∂ x i ( 1 ) \frac{\partial f_i}{\partial x_i} = \frac{\partial \sum_{i = 1}^{3}f_i\vec{e_i}}{\partial \sum_{i = 1}^{3}x_i\vec{e_i}} =\sum_{i = 1}^{3}\frac{\partial f_i}{\partial x_i}\qquad(1) xifi=i=13xiei i=13fiei =i=13xifi1 结果为一个标量,即向量 F 的散度, ∇ ⋅ \nabla · F = ∂ f i ∂ x i =\frac{\partial f_i}{\partial x_i} =xifi


∂ f ∂ x i = ∂ f ∂ ∑ i = 1 3 x i e i ⃗ = ∑ i = 1 3 ∂ f ∂ x i e i ⃗ ( 2 ) \frac{\partial f}{\partial x_i} = \frac{\partial f}{\partial \sum_{i = 1}^{3}x_i\vec{e_i}} =\sum_{i = 1}^{3}\frac{\partial f}{\partial x_i } \vec{e_i} \qquad (2) xif=i=13xiei f=i=13xifei (2)
结果为一个向量,即标量 f f f 的梯度, ∇ f = ∂ f ∂ x i \nabla f=\frac{\partial f}{\partial x_i} f=xif


∂ f i ∂ x j = ∂ ∑ i = 1 3 f i e i ⃗ ∂ ∑ j = 1 3 x j e j ⃗ = ∑ i = 1 3 ∑ j = 1 3 ∂ f i ∂ x j e j ⃗ ( 3 ) \frac{\partial f_i}{\partial x_j} = \frac{\partial \sum_{i = 1}^{3}f_i\vec{e_i}}{\partial \sum_{j = 1}^{3}x_j\vec{e_j}} =\sum_{i=1}^{3}\sum_{j= 1}^{3}\frac{\partial f_i}{\partial x_ j}\vec{e_j} \qquad(3) xjfi=j=13xjej i=13fiei =i=13j=13xjfiej (3)
结果为一个向量,为向量 F \bm{F} F 各个方向上坐标值的梯度和,即 ∇ ( F ⋅ e i ⃗ ) = ∂ f i ∂ x j \nabla(\bm{F}· \vec{e_i})=\frac{\partial f_i}{\partial x_j} (Fei )=xjfi

如(1)(2)(3)所示,只有当组合式中的下标出现偶数次 (存在一对同名下标) 时,才会得到标量,否则得到向量。



克罗内克符号和交变张量


克罗内克符号(Kronecker delta) δ i j \delta _{ij} δij定义如下:
δ i j = { 0 i ≠ j 1 i = j = [ 1 0 0 0 1 0 0 0 1 ] ( 4 ) \delta _{ij}= \begin{cases} 0& i\neq j\\ 1& i = j \end{cases} = \begin{bmatrix}1 \quad 0 \quad 0 \\ 0\quad 1 \quad0 \\ 0 \quad 0\quad 1\end{bmatrix} \qquad (4) δij={01i=ji=j=100010001(4)

显然,由于矩阵为对角阵, δ i j = δ j i \delta _{ij} = \delta _{ji} \qquad δij=δji


一个重要的化简式: δ i j a j = [ 1 0 0 0 1 0 0 0 1 ] [ a 1 a 2 a 3 ] = [ a 1 a 2 a 3 ] = a i ( 5 ) \delta _{ij} a_{j} =\begin{bmatrix}1 \quad 0 \quad 0 \\ 0\quad 1 \quad0 \\ 0 \quad 0\quad 1\end{bmatrix} \begin{bmatrix} a_{1}\\a_{2}\\a_{3} \end{bmatrix} = \begin{bmatrix} a_{1} \quad a_{2} \quad a_{3} \end{bmatrix} = a_{i} \qquad (5) δijaj=100010001a1a2a3=[a1a2a3]=ai(5)
即可认为 δ i j \delta _{ij} δij 乘上一个向量后具有维度转换的功能。

类似的,也有 δ i j δ j k = δ i k \delta _{ij} \delta _{jk} = \delta _{ik} δijδjk=δik,直观地看,就是下标的相消。


交变张量(alternating tensor) ϵ i j k \epsilon _{ijk} ϵijk定义如下:
ϵ i j k = { + 1 ( i , j , k ) = ( 1 , 2 , 3 ) , ( 2 , 3 , 1 ) , ( 3 , 1 , 2 ) − 1 ( i , j , k ) = ( 3 , 2 , 1 ) , ( 2 , 1 , 3 ) , ( 1 , 3 , 2 ) 0 ( i , j , k ) = e l s e ( 6 ) \epsilon _{ijk}= \begin{cases} +1& (i,j,k) = (1,2,3),(2,3,1),(3,1,2) \\ -1& (i,j,k) = (3,2,1),(2,1,3),(1,3,2)\\ 0 &(i,j,k) = else \end{cases} \qquad (6) ϵijk=+110(i,j,k)=(1,2,3),(2,3,1),(3,1,2)(i,j,k)=(3,2,1),(2,1,3),(1,3,2)(i,j,k)=else(6)

便于记忆的方式是,顺序排列取+1,逆序排列取-1,其余均取0。由异名下标的遍历作用,可以知道 ϵ i j k \epsilon _{ijk} ϵijk表示了一个 3 × 3 × 3 3×3×3 3×3×3 的共 27个元素的张量。


由定义也容易看出, ϵ i j k = ϵ j k i = ϵ k i j \epsilon _{ijk} = \epsilon _{jki} = \epsilon _{kij} ϵijk=ϵjki=ϵkij ϵ i j k = − ϵ j i k \epsilon _{ijk} = -\epsilon _{jik} ϵijk=ϵjik

我们可以使用交变张量来表示向量的叉乘, 如 c = a × b \bm{c =a × b} c=a×b,即 c i = ( a × b ) i = ϵ i j k a j b k c_i=(\bm{a× b})_i=\epsilon _{ijk}a_{j}b_{k} ci=(a×b)i=ϵijkajbk

当然,同样可以用三个求和符号来展开叉乘运算: ϵ i j k a j b k = ∑ i = 1 3 ∑ j = 1 3 ∑ k = 1 3 ϵ i j k a j b k e i ⃗ \epsilon _{ijk}a_{j}b_{k} = \sum_{i=1}^{3}\sum_{j = 1}^{3}\sum_{k=1}^{3}\epsilon _{ijk}a_{j}b_{k}\vec{e_{i}} ϵijkajbk=i=13j=13k=13ϵijkajbkei

一个重要的代换式: ϵ i j k ϵ k l m = δ i l δ j m − δ i m δ j l ( 7 ) \epsilon _{ijk} \epsilon _{klm} = \delta _{il} \delta _{jm} - \delta _{im} \delta _{jl} \qquad (7) ϵijkϵklm=δilδjmδimδjl(7)
该式可通过逐层待定各下标取值后枚举各种情况得到证明。两个交变张量积可转换为两项克罗内克符号积的差,这有利于实际化简,即 27 × 27 → 9 × 9 − 9 × 9 27×27→9 × 9 - 9 × 9 27×279×99×9


如证明标量三重积满足交换律,即证 a ⋅ ( b × c ) = b ⋅ ( c × a ) = c ⋅ ( a × b ) \bm{a · (b × c) = b · (c × a) = c · (a × b)} a(b×c)=b(c×a)=c(a×b)

证 明 : 证明: :
由 于 ϵ i j k a i b j c k = ϵ j k i b j c k a i = ϵ k i j c k a i b j , 故 由于\epsilon _{ijk}a_i b_j c_k =\epsilon _{jki} b_j c_k a_i = \epsilon _{kij}c_k a_i b_j,故 ϵijkaibjck=ϵjkibjckai=ϵkijckaibj a ⋅ ( b × c ) = b ⋅ ( c × a ) = c ⋅ ( a × b ) \bm{a · (b × c) = b · (c × a) = c · (a × b)} a(b×c)=b(c×a)=c(a×b)

再如证明向量三重积满足 a × ( b × c ) = ( a ⋅ c ) b − ( a ⋅ b ) c \bm{a × (b × c) = (a · c)b - (a · b)c} a×(b×c)=(ac)b(ab)c
证 明 : 证明:
[ a × ( b × c ) ] i = ϵ i j k a j ϵ k l m b l c m = ( δ i l δ j m − δ i m δ j l ) a j b l c m = a m b i c m − a j b j c i = [ ( a ⋅ c ) b − ( a ⋅ b ) c ] i \bm{[a×(b×c)]_i} =\epsilon _{ijk} a_j \epsilon _{klm} b_l c_m = (\delta _{il} \delta _{jm} - \delta _{im} \delta _{jl})a_j b_l c _m =a_m b_i c_m - a_j b_j c_i = \bm{[(a · c)b - (a · b)c]_i} [a×(b×c)]i=ϵijkajϵklmblcm=(δilδjmδimδjl)ajblcm=ambicmajbjci=[(ac)b(ab)c]i



场的梯度、散度和旋度

先定义哈密顿算符 ∇ \nabla ,哈密顿算符具有微分和向量的双重性质。
[ ∇ ] i = ∂ ∂ x i [\nabla]_i =\frac{\partial}{\partial x_i} []i=xi

由哈密顿算符可以导出梯度、散度和旋度的表达式。
梯 度 [ ∇ f ] i = ∂ f ∂ x i ( 8 ) 梯度 \qquad [\nabla f]_i = \frac{\partial f}{\partial x_i} \qquad (8) [f]i=xif(8)
散 度 ∇ ⋅ u = ∂ u i ∂ x i ( 9 ) 散度 \qquad \nabla · \bm{u} = \frac{\partial u_i}{\partial x_i} \qquad (9) u=xiui(9)
旋 度 [ ∇ × u ] i = ϵ i j k ∂ u k ∂ x j ( 10 ) 旋度 \qquad [\nabla × \bm{u}]_i =\epsilon_{ijk} \frac{\partial u_k}{\partial x_j} \qquad (10) [×u]i=ϵijkxjuk(10)


求梯度的散度

∇ ⋅ ( ∇ f ) = ∂ 2 f ( ∂ x i ) 2 = ∇ 2 f \nabla · (\nabla f) =\frac{\partial ^2 f}{(\partial x_i)^2}=\nabla ^2 f (f)=xi22f=2f
该式表明梯度的散度即是标量场的拉普拉斯运算

求梯度的旋度

[ ∇ × ( ∇ f ) ] i = ϵ i j k ∂ ∂ x j ∂ f ∂ x k = ϵ i k j ∂ ∂ x k ∂ f ∂ x j = − ϵ i j k ∂ ∂ x j ∂ f ∂ x k = 0 ( 11 ) [\nabla × (\nabla f)]_i = \epsilon _{ijk} \frac{\partial}{\partial x_j}\frac{\partial f}{\partial x_k} = \epsilon _{ikj} \frac{\partial}{\partial x_k}\frac{\partial f}{\partial x_j} =-\epsilon _{ijk} \frac{\partial}{\partial x_j}\frac{\partial f}{\partial x_k} = 0 \qquad (11) [×(f)]i=ϵijkxjxkf=ϵikjxkxjf=ϵijkxjxkf=0(11)
该式表明,所有保守场(即可表示为某个标量场的梯度)的旋度为0

求散度的梯度

[ ∇ ( ∇ ⋅ u ) ] i = ∂ ∂ x i ∂ u j ∂ x j = ∂ 2 u j ∂ x i ∂ x j [\nabla(\nabla · \bm{u})]_i = \frac{\partial}{\partial x_i}\frac{\partial u_j}{\partial x_j}=\frac{\partial ^2 u_j}{\partial x_i \partial x_j} [(u)]i=xixjuj=xixj2uj
该式已经化到最简,结果为向量。

求旋度的散度

∇ ⋅ ( ∇ × u ) = ∂ ∂ x i ϵ i j k u k x j = ϵ j i k ∂ ∂ x j ∂ u k ∂ x i = − ϵ i j k ∂ ∂ x i ∂ u k x j = 0 ( 12 ) \nabla · (\nabla × \bm{u}) = \frac{\partial}{\partial x_i} \epsilon _{ijk} \frac{u _k}{x _j}=\epsilon _{jik} \frac{\partial}{\partial x_j}\frac{\partial u_k}{\partial x_i} = -\epsilon _{ijk} \frac{\partial}{\partial x_i} \frac{\partial u _k}{x _j} = 0 \qquad(12) (×u)=xiϵijkxjuk=ϵjikxjxiuk=ϵijkxixjuk=0(12)
该式表明,所有有旋场(即可表示为某个向量场的旋度)的散度为0

求旋度的旋度

[ ∇ × ( ∇ × u ) ] i = ϵ i j k ∂ ∂ x j ϵ k l m u m x l = ( δ i l δ j m − δ i m δ j l ) ∂ 2 u m ∂ x j ∂ x l = ∂ 2 u j ∂ x j ∂ x i − ∂ 2 u i ∂ x j ∂ x j = [ ∇ ( ∇ ⋅ u ) − ∇ 2 u ] i [\nabla × (\nabla × \bm{u})]_i = \epsilon _{ijk} \frac{\partial}{\partial x_j} \epsilon _{klm} \frac{u _m}{x _l}=(\delta _{il} \delta _{jm} - \delta _{im} \delta _{jl})\frac{\partial ^2 u_m}{\partial x_j \partial x_l}=\frac{\partial ^2 u_j}{\partial x_j \partial x_i}-\frac{\partial ^2 u_i}{\partial x_j \partial x_j}=[\nabla (\nabla · \bm{u}) - \nabla ^2 \bm{u}]_i [×(×u)]i=ϵijkxjϵklmxlum=(δilδjmδimδjl)xjxl2um=xjxi2ujxjxj2ui=[(u)2u]i
该式给出了向量场的拉普拉斯运算,即:
∇ 2 u = ∇ ( ∇ ⋅ u ) − ∇ × ( ∇ × u ) ( 13 ) \nabla ^2 \bm{u} = \nabla (\nabla · \bm{u}) - \nabla × (\nabla × \bm{u}) \qquad (13) 2u=(u)×(×u)(13)
可利用上式在推导有旋场的旋度时进行转换化简。

场量的梯度、散度和旋度

公式意义3
∇ ( f g ) = g ∇ f + f ∇ g \nabla(fg)= g\nabla f +f\nabla g (fg)=gf+fg标量乘标量的梯度满足复合求导法则
∇ ⋅ ( f u ) = ∇ f ⋅ u + f ∇ ⋅ u \nabla· (f \bm{u})= \nabla f · \bm{u}+ f\nabla · \bm{u} (fu)=fu+fu标量乘向量的散度满足复合求导法则
∇ × ( f u ) = ∇ f × u + f ∇ × u \nabla× (f \bm{u})=\nabla f × \bm{u} + f\nabla × \bm{u} ×(fu)=f×u+f×u标量乘向量的旋度满足复合求导法则
∇ ⋅ ( u × v ) = ( ∇ × u ) ⋅ v − ( ∇ × v ) ⋅ u \nabla· ( \bm{u × v})= ( \bm{\nabla× u}) · \bm{v}-\bm{(\nabla× v}) · \bm{u} (u×v)=(×u)v(×v)u向量叉乘的散度等于散度的点乘差
∇ × ( u × v ) = u ( ∇ ⋅ v ) + v ⋅ ∇ u − u ⋅ ∇ v − v ( ∇ ⋅ u ) \nabla× ( \bm{u × v})= \bm{u(\nabla · v)+v·\nabla u - u · \nabla v - v(\nabla · u)} ×(u×v)=u(v)+vuuvv(u) 4向量叉乘的旋度等于散度和梯度的点乘差
∇ ( u ⋅ v ) = u × ( ∇ × v ) + v × ( ∇ × u ) + u ⋅ ∇ v + v ⋅ ∇ u \nabla ( \bm{u · v})= \bm{u ×(\nabla × v)+v×(\nabla × u) + u · \nabla v + v · \nabla u} (uv)=u×(×v)+v×(×u)+uv+vu向量点乘的梯度等于旋度的叉乘加梯度的点乘

以上各公式均可推导得到,下以最后一式的证明为例:

证 明 : 证明: :
由 于 [ u × ( ∇ × v ) ] i = ϵ i j k u j ϵ k l m ∂ v m ∂ x l = ( δ i l δ j m − δ i m δ j l ) u j ∂ v m ∂ x l = u j ∂ v j ∂ x i − u j ∂ v i ∂ x j 由于\quad \bm{[u ×(\nabla × v)]}_i = \epsilon _{ijk} u_j \epsilon _{klm} \frac{\partial v _m}{\partial x _l} = (\delta _{il} \delta _{jm} - \delta _{im} \delta _{jl}) u_j \frac{\partial v_m}{ \partial x_l} = u_j \frac{\partial v_j} {\partial x_i} - u_j \frac{\partial v_i}{\partial x_j} [u×(×v)]i=ϵijkujϵklmxlvm=(δilδjmδimδjl)ujxlvm=ujxivjujxjvi

同 理 , 互 换 字 母 就 有 [ v × ( ∇ × u ) ] i = v j ∂ u j ∂ x i − v j ∂ u i ∂ x j 同理,互换字母就有\quad \bm{[v ×(\nabla × u)]}_i = v_j \frac{\partial u_j} {\partial x_i} - v_j \frac{\partial u_i}{\partial x_j} [v×(×u)]i=vjxiujvjxjui

所 以 [ u × ( ∇ × v ) + v × ( ∇ × u ) ] i = u j ∂ v j ∂ x i − u j ∂ v i ∂ x j + v j ∂ u j ∂ x i − v j ∂ u i ∂ x j = [ ∇ ( u ⋅ v ) − u ⋅ ∇ v − v ⋅ ∇ u ] i 所以\quad \bm{[u ×(\nabla × v)+v×(\nabla × u)]}_i =u_j \frac{\partial v_j} {\partial x_i} - u_j \frac{\partial v_i}{\partial x_j} + v_j \frac{\partial u_j} {\partial x_i} - v_j \frac{\partial u_i}{\partial x_j} = [\nabla \bm{(u · v) - u · \nabla v - v · \nabla u}]_i [u×(×v)+v×(×u)]i=ujxivjujxjvi+vjxiujvjxjui=[(uv)uvvu]i

移 项 后 就 有 ∇ ( u ⋅ v ) = u × ( ∇ × v ) + v × ( ∇ × u ) + u ⋅ ∇ v + v ⋅ ∇ u 移项后就有 \nabla ( \bm{u · v})= \bm{u ×(\nabla × v)+v×(\nabla × u) + u · \nabla v + v · \nabla u} (uv)=u×(×v)+v×(×u)+uv+vu


在实际中熟练运用上述公式,可以简便场量运算。



曲面坐标系


拉梅系数

同直角坐标系均采用长度均为度量单位不同,曲面坐标系通过引入弧长使得能够用角度来表示曲面,从而存在角度与长度间的拉梅系数转换(也可以说是出于量纲统一的考虑)。一般而言,拉梅系数:
h i = ∂ l i ∂ u i ( 14 ) h_i = \frac{\partial l_i}{\partial u_i} \qquad (14) hi=uili(14)
即该坐标方向上的长度增量 ∂ l i \partial l_i li与坐标增量 ∂ u i \partial u_i ui的比值。

个人理解:在柱和球坐标系中,即为坐标向量所在平面的圆弧半径。

坐标系 h 1 h_1 h1 h 2 h_2 h2 h 3 h_3 h3
直角(x,y,z)111
柱 (ρ,φ,z)1ρ1
球 (r,θ,φ)1rrsinθ

公式

得到拉梅系数后,就可统一表达梯度、散度、拉普拉斯和旋度的求解公式。5

意义公式
梯度 ∇ f = [ ∇ f h i ] i = ∂ f h i ∂ u i \nabla f =[\nabla \frac{f}{h_i}]_i = \frac{\partial f}{h_i\partial u_i} f=[hif]i=hiuif
散度 ∇ ⋅ A = ∇ ⋅ A i = ∂ ( h ! i A i ) h ∗ ∂ u i \nabla · \bm{A} = \nabla ·A_i = \frac{\partial (h_{! i} A_i)}{h_*\partial u_i} A=Ai=huih!iAi
拉普拉斯 ∇ 2 f = ∇ ⋅ [ ∇ f h i ] i = ∂ h ∗ ∂ u i ( h ! i ∂ f h i ∂ u i ) \nabla ^2 f =\nabla · [\nabla \frac{f}{h_i}]_i = \frac{\partial }{h_*\partial u_i} (\frac{h_{!i}\partial f}{h_i\partial u_i} ) 2f=[hif]i=hui(hiuih!if)
旋度 ∇ × A = ϵ i j k ∇ j ⋅ A k = ϵ i j k ∂ ( h k A k ) h ! i ∂ u j \nabla × \bm{A} =\epsilon_{ijk}\nabla_j · A_k=\epsilon_{ijk} \frac{\partial(h_k A_k)}{h_{!i} \partial u_j} ×A=ϵijkjAk=ϵijkh!iuj(hkAk)

感觉也没简单多少(兀然)

在具体问题分析中,往往直接记下相应的公式会更加简便,虽然实际问题求解时更多考察微元的选取


  1. 参照《Vector Calculus》该书的《Suffix Notation and its Applications》章节 ↩︎

  2. 矩阵和求和表示属个人理解,推导尚缺严谨性 ↩︎

  3. 此部分亦属个人概念阐释,方便直观理解 ↩︎

  4. 新定义算符 u ⋅ ∇ = u j ∂ ∂ x j \bm{u ·\nabla}=u_j \frac{\partial}{\partial x_j} u=ujxj,同拉普拉斯算符 ∇ 2 \nabla ^2 2一样,既可作用于标量,也可作用于向量 ↩︎

  5. 定义 h i h_i hi表示第i个拉梅系数, h ! i h_{!i} h!i表示除 h i h_i hi外的两个拉梅系数的乘积, h ∗ h_* h表示所有拉梅系数的乘积,均为标量。如对于 h 1 h_1 h1,则 h ! 1 = h 2 h 3 , h ∗ = h 1 h 2 h 3 h_{!1} =h_2 h_3,h_* = h_1 h_2 h_3 h!1=h2h3h=h1h2h3 ↩︎

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值