基于二次近似(BLEAQ)的双层优化进化算法_matlab程序

本文介绍了一种基于二次近似优化的双层进化算法,针对复杂双层问题设计,能在有限函数调用下处理不同难度任务。通过与经典优化融合,算法在SMD测试集和标准测试问题上展现显著性能提升,适用于难以精确解决的优化问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考文献如上。

双层优化问题是一类具有挑战性的优化问题,包含两个层次的优化任务。在这些问题中,下层问题的最优解成为上层问题的可能可行候选。这样的要求使得优化问题难以解决,并使研究人员忙于设计能够有效处理该问题的方法。尽管付出了努力,但几乎没有任何有效的方法能够处理复杂的双层问题。本文介绍了基于最优下层变量相对于上层变量的二次近似的双层进化算法。该方法能够在相对较少的函数求值中处理具有不同复杂性的两层问题。来自经典优化的思想已经与进化方法混合,为一大类双层问题生成了一个有效的优化算法。在两组测试问题上对算法的性能进行了评估。第一组是最近提出的SMD测试集,其中包含复杂性可控的问题,第二组包含从文献中收集的标准测试问题。已经将所提出的方法与三个基准进行了比较,并且观察到性能增益是显著的。与论文相关的代码可以从网站上获取。

双层优化是优化的一个分支,它包含一个嵌套在外部优化问题约束下的优化问题。外部优化任务通常被称为上层优化问题,内部优化任务被称为下层优化问题。下层问题作为约束出现,使得只有下层优化问题的最优解才是上层优化问题的可能可行候选。这样的要求使得两级优化问题难以处理,并使研究人员和实践者同样忙碌。分层优化结构可能会带来一些困难,如非凸性和不可连接性,甚至对于更简单的两层优化,如两层线性规划问题。已知双层线性规划是强NP难的(汉森,贾马尔,萨瓦德,1992),已经证明,仅仅评估最优解也是一个NP难的任务。这给了我们一个关于复杂(非线性、非凸、不连续等)的双层问题所带来的挑战的概念。)目标和约束函数。

本文中,我们提出了一种混合策略,它将经典双层规划的思想运用到进化算法中。已经讨论了一些现有的数学结果,作为设计进化算法的动机。该方法是一种基于下层最优变量的二次近似作为上层变量函数的双层进化算法。本文提出的算法不是针对可以用精确方法解决的问题,而是针对由于前面提到的现实困难而导致精确方法失败的问题。在我们的研究中选择的大多数测试问题不能用经典的双层规划算法来解决,另一方面,单独使用进化算法以嵌套的方式来解决它们将被证明在计算上非常昂贵。已经进行了计算研究来证明我们的主张。

双层优化是一个包含两层优化任务的嵌套优化问题。双层优化问题的结构要求下层优化问题的最优解只能作为上层优化问题的可行候选。

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

电磁MATLAB

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值