KNN为什么是监督学习?

KNN为什么是监督学习?

KNN算法,最近邻居算法,虽然被归类为监督学习,但是我一直有些疑问。觉得它不算一个正经的监督学习算法。

1. KNN压根没有学习过程

KNN是没有学习过程的,所以应不应该归类为机器学习都不好说。它的算法大致如下,首先你有一堆有label的样本,然后来了一个新的没有label的数据点,你想把这个点分成既有的类别,怎么分?
很容易想到方法是,看距离这个新的数据点的比较近的邻居,都是什么label的,如果大多数都是A类,那么这个新数据点很大可能性是A。至于K,只是你要看几个邻居。
但是你发现,它其实并没有一个根据学习数据的label调整自身逻辑或者参数的过程,只是一个计算逻辑。

2.只因需要label数据所谓被归类为监督学习

KNN被算作监督学习主要原因是,它需要有label的数据,在一定程度上反映了label数据的规律。如果这是宽泛的监督学习定义的话,那么它可以被分类成监督学习。但就算如此KNN算也是监督学习里面比较不一样的算法吧。
毕竟它的核心就是,如果我之前见到的数据都大多都是A,那么新来的也应该是A,这种比较简易的逻辑,不能算作有预测能力。

3. 在SMOTE等up-sampling里的作用

最开始接触KNN,是在处理不平衡数据做up-sampling的时候,比如SMOTE的算法里面就有用KNN生成minor class的样本,比单纯的只复制增加minor class + downsampling major class效果要好

<think>嗯,用户想了解KNN算法的定义及原理。首先,我需要回忆一下KNN的基本概念。KNN全称是k-近邻算法,属于监督学习,既可以分类也可以回归。根据引用内容,用户提供的三个参考资料里提到了KNN的基本原理、分类回归应用、超参数选择、距离度量和优化方法比如KD树。 首先,应该从定义入手。KNN的定义应该是通过测量不同样本之间的距离来进行分类或回归。当对一个新样本进行预测时,算法会找到训练集中距离最近的K个邻居,然后根据这些邻居的多数类别或者平均值来预测结果。需要确认引用中的内容是否支持这一点。例如引用[1]提到“确定近邻的数量K”和“距离度量方式”,引用[2]中的图示说明K值不同会影响分类结果,引用[3]则强调k的选择和距离公式的重要性。 接下来是原理部分。需要分步骤说明:1. 计算距离,常用的有欧氏距离、曼哈顿距离、余弦相似度等。引用[1]和[3]都提到了距离度量方式的选择。2. 选择K值,引用[3]提到用交叉验证来防止过拟合和欠拟合。3. 投票或平均,引用[2]中的多数分类原则。4. 可能的优化手段,比如KD树,这在引用[3]里有提到,用于提高距离计算的效率。 另外,用户可能对KNN的应用场景和优缺点感兴趣,但问题明确问的是定义和原理,所以可能需要简要提到,但重点还是放在核心内容上。需要确保回答结构清晰,步骤分明,并且正确引用资料中的内容。比如引用[1]的执行过程,引用[2]的示例图,引用[3]的交叉验证和KD树。 还要注意用户提到的系统级指令,比如数学公式要用$...$格式,独立公式用$$...$$,但用户的问题中可能不需要太多公式,但如果有的话要正确使用。例如距离公式可以写成欧氏距离:$\sqrt{\sum_{i=1}^n (x_i - y_i)^2}$,这样符合格式要求。 最后生成相关问题时要基于KNN的关键点,比如K值选择、距离度量、优缺点、优化方法等。需要参考已有的引用内容,确保问题相关且有意义。例如,如何选择K值,KNN与其他算法的比较,或者KD树的具体实现。</think>### KNN算法的定义及原理 #### 定义 **K-近邻算法(K-Nearest Neighbors, KNN)** 是一种基于实例的监督学习算法,既可用于分类,也可用于回归。其核心思想是:对于待预测的样本,通过计算其与训练集中所有样本的距离,选取最近的$K$个邻居,并根据这些邻居的多数类别(分类)或平均值(回归)进行预测[^1][^2]。 #### 原理步骤 1. **确定超参数** - **K值**:选择近邻数量$K$,需通过交叉验证避免过拟合(如$K=3$时依赖较小范围的邻居,$K=5$时范围更大)[^3]。 - **距离度量**:常用欧氏距离($d = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$)、曼哈顿距离或余弦相似度。 - **权重计算**:可为邻居赋予不同权重(如距离越近权重越高)。 2. **计算距离并排序** 对每个待预测样本,计算其与所有训练样本的距离,并按距离升序排列。 3. **投票或平均** - **分类任务**:统计$K$个邻居中类别频率最高的结果作为预测值。 - **回归任务**:取$K$个邻居目标值的平均值作为输出。 4. **优化方法** - **KD树**:通过二叉树结构高效存储和搜索$K$维空间数据,加速距离计算过程。 - **特征标准化**:消除不同特征量纲对距离计算的影响。 #### 特点 - **优点**:简单易实现,无需训练过程;适用于非线性数据。 - **缺点**:计算复杂度高(需遍历所有样本);对高维数据敏感(维度灾难)。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值