金融信贷风控基础知识

一、所谓风控(What && Why)

所谓风控,可以拆解从2个方面看,即 风险控制

风险(what)

风险 这里狭隘的特指互联网产品中存在的风险点,例如

  • 账户风险
    • 垃圾注册账号
    • 账号被泄露盗用
  • 交易支付风险
    • 刷单:为提升卖家店铺人气,买卖家串通等方式虚假交易
    • 恶拍:恶意买家在卖家店铺频繁下单不支付;恶意买家通过频繁下单传播垃圾UGC等行为
    • 盗刷:买家卡被盗在平台上消费
    • 套现:伪装买卖家,在平台上信用卡交易,套出现金获利
  • UGC风险
    • 风险类别:涉政、涉黄、涉爆等方面的文本、视频
    • 传播渠道:创建店铺、商品相关的标题,详情页;下单支付的备注留言;IM消息等

控制(why)

一般互联网产品,特别电商类产品,都希望拉新提升日活,同时运营好这些用户,提升用户粘性。类似刷单、恶拍等交易支付风险,传播垃圾信息等UGC风险会严重影响平台产品体验,所以我们需要控制这些风险点。

控制 即是要预防、识别、控制风险的发生。风险的控制一般分为事前,事中,事后3个阶段处理。

  • 识别及预防:一般风险行为和正常行为的行为链路会有所不同。通过分析用户的整个行为链路,可以将风险行为和正常行为区分开
  • 事后控制:风险事件发生后,可以采取一定措施控制事件影响,例如用户套现,交易已经发生,但是可以通过控制提现时长或者冻结资金等方式来控制减小影响面

二、如何风控-How

下图是美团风控架构图,自己想要总结的也和下图大同小异。这里借用,下面详细描述各模块职责和一些技术细节
在这里插入图片描述

对接系统

从产品层面看,风控会对接很多产品线,例如上图中到店餐饮、外卖等。和业务线的对接方式不断迭代有以下优化

  • 原始的方式:每个业务线单独对接,都需要新开接口,单独支持联调。成本高,效率低
  • 优化后方式:打造统一接入平台,业务+场景 平台化配置,自动对接调试。

对接系统只专注负责一个事情,即通过配置化对接业务的风控接入,需要配置的点,包含2个部分

  • 配置业务和场景:让风控感知到新的业务场景的接入
  • 数据协议:配置请求参数的数据字段
  • 异步事件接入:额外的数据接入,可能是通过消息接入。例如订单状态变更的消息等

各业务线接入后,整个数据层面也可以通过账户或设备指纹等维度打通,这样就可以从用户整个行为链路分析和识别风险。

平台系统

规则引擎

规则引擎作为风控的核心,最重要的便是如何将 规则算法数据特征 灵活高效组装,将他们的功效输出。

直白讲,规则引擎对每次 事件 的风险判定,是根据 规则算法 综合判定的,而规则算法一般都会需要很多特征数据。左手规则算法,后手特征数据,拼装在一块,变得出风险判定结果

规则平台

规则设计
从不同层次看,规则可以分为

  • 因子:最小的逻辑单元。例如 买家单日下单总量>5;注册时间3天内等
  • 规则:最小的决策单元,由若干因子和与或逻辑嵌套组成。例如 买家单日下单总量>5 且 (注册时间3天内 或 买家单月支付总额>1000)
  • 策略集:某个业务场景下的规则集,由若干规则组成

规则维护
从B端角度看,规则中心主要负责

  • 规则的增删查改的维护
  • 规则的测试
  • 规则效果分析

从C端角度看

  • 各业务线规则集的查询

数据特征中心

一般针对需要风控介入的场景,称场景下的每次行为为一个事件,例如称一个新用户注册为一个注册事件,一次下单行为为交易事件,一次支付行为为支付事件等等。

上面描述的每个事件,都可称为基本事件数据。

特征中心主要负责维护规则和算法需要的各种特征数据。针对事件数据,可能做多种维度的统计和分析得到处理后的数据,称为 特征数据 。例如单个用户每小时,每天,每周的下单量等。

参考来源:https://github.com/yangliang1415/awesome-risk-control
美团点评业务风控系统构建经验:https://tech.meituan.com/2017/01/13/risk-control-system-experience-sharing.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>