FastRCNN

FastRCNN步骤

  • 使用选择化搜索生成候选区域
  • 使用深度神经网络提取特征
  • 将生成的候选区域映射到特征图上,使用ROI池化缩放到统一尺寸(7×7)
  • 将ROI池化后的特征图展平,然后通过多个全连接层
  • 并行使用两个全连接层来预测类别和边界框

请添加图片描述

FastRCNN和RCNN区别

RCNN是先提取多个候选区域,然后把候选区域输入到卷积神经网络,这样在前向传播的时候会有许多的重复计算,而FastRCNN是直接将整张图片输入到卷积神经网络得到特征图,然后将候选区域映射到特征图上,这样就避免了重复计算。

训练样本采样

从选择化搜索得到的大约2000个候选区域中随机采样64个,其中一半为正样本,一半为负样本,当候选框和真实边界框的IOU大于0.5,那么认为是正样本,而候选框和所有边界框的IOU的最大值在0.1-0.5之间的则认为是负样本。

ROI池化

ROI池化可以将不同大小的特征图映射到相同大小,比如想要映射到n×n大小,那么就将原来的特征图划分成n×n个格子,每一个格子都包含了一些数值,对每一个格子使用max pooling,就可以得到n×n大小的特征。

在这里插入图片描述

分类器

假设N为类别个数,那么softmax对应的全连接层应该是N+1个节点。
在这里插入图片描述

边界框回归器

假设N为类别个数,那么边界框回归器输出(N+1)×4个值,每一个类别都对应4个值,分别为 ( d x , d y , d w , d h ) (d_x, d_y,d_w,d_h) (dx,dy,dw,dh)
在这里插入图片描述
边界框回归:
G x ^ = P w d x ( P ) + P x G y ^ = P w d y ( P ) + P y G w ^ = P w e d w ( P ) G h ^ = P h e d h ( P ) \hat{G_x}=P_wd_x(P)+P_x \\ \hat{G_y}=P_wd_y(P)+P_y \\\\ \hat{G_w}=P_we^{d_w(P)} \\ \hat{G_h}=P_he^{d_h(P)} Gx^=Pwdx(P)+PxGy^=Pwdy(P)+PyGw^=Pwedw(P)Gh^=Phedh(P)
其中, P x , P y , P w , P h P_x,P_y,P_w,P_h Px,Py,Pw,Ph分别为候选框中心x,y坐标和宽高。
G x ^ , G y ^ , G w ^ , G h ^ \hat{G_x},\hat{G_y},\hat{G_w},\hat{G_h} Gx^,Gy^,Gw^,Gh^是最终预测的边界框中心和宽高。
在这里插入图片描述

损失函数

FastRCNN使用的是多任务损失(Multi-task)
在这里插入图片描述
其中,p为softmax的输出概率,u为真实的标签, u ≥ 1 u\ge 1 u1表示只有类别不是背景的时候才有边界框回归损失。

分类损失使用的是交叉熵损失,而边界框回归损失使用的是smoothL1损失
在这里插入图片描述

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值