CCPD数据集+yolov5+智能驾驶车牌检测

                    CCPD数据集+yolov5+智能驾驶车牌检测

  1. 代码准备
  2. ccpd数据集准备
  3. ccpd转yolov5目标格式
  4. 训练
  5. 测试
  6. 检测

在此使用MobaXterm_Personal_21.2

CCCPD数据集

CCPD2019数据集:

CCPD2019数据集主要采集于合肥市停车场,采集时间为上午7:30到晚上10:00,停车场采集人员手持Android POS机对停车场的车辆拍照进行数据采集。所拍摄的车牌照片涉及多种复杂环境,包括模糊、倾斜、雨天、雪天等。CCPD2019数据集包含了25万多幅中国城市车牌图像和车牌检测与识别信息的标注。主要介绍如下:

类别         描述                                       图片数

CCPD-Base     通用车牌图片                                 200k

CCPD-FN         车牌离摄像头拍摄位置相对较近或较远             20k

CCPD-DB         车牌区域亮度较亮、较暗或者不均匀             20k

CCPD-Rotate     车牌水平倾斜20到50度,竖直倾斜-10到10度     10k

CCPD-Tilt         车牌水平倾斜15到45度,竖直倾斜15到45度     10k

CCPD-Weather    车牌在雨雪雾天气拍摄得到                     10k

CCPD-Challenge 在车牌检测识别任务中较有挑战性的图片         10k

CCPD-Blur     由于摄像机镜头抖动导致的模糊车牌图片         5k

CCPD-NP         没有安装车牌的新车图片                         5k

CCPD2019/CCPD-Base中的图像被拆分为train/val数据集。使用CCPD2019中的子数据集(CCPD-DB、CCPD-Blur、CCPD-FN、CCPD-Rotate、CCPD-Tilt、CCPD-Challenge)进行测试。

CCPD2019数据集(数据大小12.26G)下载地址:

链接:https://pan.baidu.com/s/1Jh55ufXZZpusg7Vhn4ZYdQ

提取码:f6mo

Ccpd数据集是12G左右的存储,将打包好的数据集上传至MobaXterm_Personal_21.2服务器上

例如: "/data/aimonitor/data/datasets/car_license/1002/license_use/CCPD.7z"

在此我使用的是7z工具打包的,可以在/data/aimonitor/data/datasets/car_license/1002/license_use/目录下使用Linux命令:7za x CCPD.7z解压包

在数据集目录下建立两个文件夹test/car_data

 

在car_data目录下创建两个文件夹images/labels:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

科萨福科

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值