CCPD数据集+yolov5+智能驾驶车牌检测
- 代码准备
- ccpd数据集准备
- ccpd转yolov5目标格式
- 训练
- 测试
- 检测
在此使用MobaXterm_Personal_21.2
CCCPD数据集
CCPD2019数据集:
CCPD2019数据集主要采集于合肥市停车场,采集时间为上午7:30到晚上10:00,停车场采集人员手持Android POS机对停车场的车辆拍照进行数据采集。所拍摄的车牌照片涉及多种复杂环境,包括模糊、倾斜、雨天、雪天等。CCPD2019数据集包含了25万多幅中国城市车牌图像和车牌检测与识别信息的标注。主要介绍如下:
类别 描述 图片数
CCPD-Base 通用车牌图片 200k
CCPD-FN 车牌离摄像头拍摄位置相对较近或较远 20k
CCPD-DB 车牌区域亮度较亮、较暗或者不均匀 20k
CCPD-Rotate 车牌水平倾斜20到50度,竖直倾斜-10到10度 10k
CCPD-Tilt 车牌水平倾斜15到45度,竖直倾斜15到45度 10k
CCPD-Weather 车牌在雨雪雾天气拍摄得到 10k
CCPD-Challenge 在车牌检测识别任务中较有挑战性的图片 10k
CCPD-Blur 由于摄像机镜头抖动导致的模糊车牌图片 5k
CCPD-NP 没有安装车牌的新车图片 5k
CCPD2019/CCPD-Base中的图像被拆分为train/val数据集。使用CCPD2019中的子数据集(CCPD-DB、CCPD-Blur、CCPD-FN、CCPD-Rotate、CCPD-Tilt、CCPD-Challenge)进行测试。
CCPD2019数据集(数据大小12.26G)下载地址:
链接:https://pan.baidu.com/s/1Jh55ufXZZpusg7Vhn4ZYdQ
提取码:f6mo
Ccpd数据集是12G左右的存储,将打包好的数据集上传至MobaXterm_Personal_21.2服务器上
例如: "/data/aimonitor/data/datasets/car_license/1002/license_use/CCPD.7z"
在此我使用的是7z工具打包的,可以在/data/aimonitor/data/datasets/car_license/1002/license_use/目录下使用Linux命令:7za x CCPD.7z解压包
在数据集目录下建立两个文件夹test/car_data
在car_data目录下创建两个文件夹images/labels: