整数线性规划——pulp指南

本文是整数线性规划的pulp指南。介绍了PuLP这一Python线性规划建模工具,包括其引入、求解器配置方法。还通过猫粮问题案例,展示了如何确定决策变量、制定目标函数和限制条件,并给出了Python实现代码,帮助理解整数线性规划的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

整数线性规划——pulp指南

PuLP是一个用Python编写的线性规划建模工具。PuLP可以生成MPS或LP文件,并调用GLPK、COIN-OR CLP/CBC、CPLEX、GUROBI、MOSEK、XPRESS、CHOCO、MIPCL、HiGHS、SCIP/FSCIP等求解线性问题。

官方文档地址:https://coin-or.github.io/pulp/index.html

线性规划的标准表示如下:

(LP) min ⁡ c T x , s . t .   A x ≤ b , x ∈ R + n \text{(LP)}\quad\begin{aligned} &\min c^Tx,\\ &s.t.\ Ax\le b,\\ &\qquad x\in \R_+^n \end{aligned} (LP)mincTx,s.t. Axb,xR+n

一、引入

使用pip install pulp安装pulp。

from pulp import *

可以使用LpVariable() 创建新的变量,例如创建变量 0 ≤ x ≤ 3 0\le x\le 3 0x3

x = LpVariable("x", 0, 3)

创建变量 0 ≤ y ≤ 1 0\le y\le 1 0y1

y = LpVariable("y", 0, 1)

使用LpProblem()创建新的问题,比如说创建名为myProblem的线性规划问题:

prob = LpProblem("myProblem", LpMinimize)

将变量组合成表达式和约束条件,然后将它们添加到问题中:

prob += x + y <= 2

如果添加一个表达式(而非约束),它将变成目标函数:

prob += -4*x + y

使用默认求解器进行求解:

status = prob.solve()

展示解的状态:

LpStatus[status]
'Optimal'

查看具体的值:

print(value(x))
print(value(y))
2.0
0.0

二、配置求解器

PuLP通常有多种连接求解器的方式。根据连接方式的不同,配置连接的方法也会有所不同。我们可以将集成总结为两大类:

  1. 使用求解器的命令行界面。

  2. 使用求解器的Python库。

并非所有求解器都有Python库,但大多数都有命令行界面。如果求解器API的名称以CMD结尾(例如PULP_CBC_CMD、CPLEX_CMD、GUROBI_CMD等),那么它就是命令行,否则是python库。

这里我安装cplex,可以前往IBM官网进行申请安装:https://www.ibm.com/analytics/cplex-optimizer

配置路径如下:

# 这里需要换成自己电脑上cplex.exe所在的地址
path_to_cplex = r'D:\software\cplex\cplex\bin\x64_win64\cplex.exe'
import pulp as pl
model = pl.LpProblem("Example", pl.LpMinimize)
solver = pl.CPLEX_CMD(path=path_to_cplex)
_var = pl.LpVariable('a')
_var2 = pl.LpVariable('a2')
model += _var + _var2 == 1
result = model.solve(solver)

配置一次以后便不用再配置。

import pulp as pl
model = pl.LpProblem("Example", pl.LpMinimize)
solver = pl.CPLEX_CMD()
_var = pl.LpVariable('a')
_var2 = pl.LpVariable('a2')
model += _var + _var2 == 1
result = model.solve(solver)
print(result)
1

三、案例学习——猫粮问题

问题描述

Uncle Ben’s希望以尽可能低的成本生产他们的猫粮产品,同时确保它们符合罐头上显示的营养分析要求。因此,他们希望在仍然满足营养标准的情况下改变使用每种成分的数量(主要成分包括鸡肉、牛肉、羊肉、大米、小麦和明胶)。

在这里插入图片描述

鸡肉、牛肉和羊肉的成本分别为0.013美元、0.008美元和0.010美元,而大米、小麦和明胶的成本分别为0.002美元、0.005美元和0.001美元。(所有成本均为每克。)对于这个练习,我们将忽略维生素和矿物质成分。(这些成本可能非常小。)

每种成分对最终产品中蛋白质、脂肪、纤维和盐的总重量都有贡献。每克成分的贡献(以克为单位)如下表所示:

StuffProteinFatFibreSalt
Chicken0.1000.0800.0010.002
Beef0.2000.1000.0050.005
Mutton0.1500.1100.0030.007
Rice0.0000.0100.1000.002
Wheat bran0.0400.0100.1500.008
Gel0.0000.0000.0000.000

建模表示

确定决策变量

假设Whiskas想要用两种成分制作他们的猫食:鸡肉和牛肉。首先定义我们的决策变量:

x 1 = 一罐猫粮中所用鸡肉的百分比 x 2 = 一罐猫粮中所用牛肉的百分比 x_1=一罐猫粮中所用鸡肉的百分比\\ x_2 =一罐猫粮中所用牛肉的百分比 x1=一罐猫粮中所用鸡肉的百分比x2=一罐猫粮中所用牛肉的百分比

这些变量必须大于零。

制定目标函数

目标函数变为:

min ⁡ 0.013 x 1 + 0.008 x 2 \min 0.013x_1+0.008x_2 min0.013x1+0.008x2

限制

变量必须加起来等于100,并且满足营养需求:

1.000 x 1 + 1.000 x 2 = 100.0 0.100 x 1 + 0.200 x 2 ≥ 8.0 0.080 x 1 + 0.100 x 2 ≥ 6.0 0.001 x 1 + 0.005 x 2 ≤ 2.0 0.002 x 1 + 0.005 x 2 ≤ 0.4 \begin{aligned} 1.000x_1&+1.000x_2=100.0\\ 0.100x_1&+0.200x_2\ge 8.0\\ 0.080x_1&+0.100x_2\ge 6.0\\ 0.001x_1&+0.005x_2\le 2.0\\ 0.002x_1&+0.005x_2\le 0.4 \end{aligned} 1.000x10.100x10.080x10.001x10.002x1+1.000x2=100.0+0.200x28.0+0.100x26.0+0.005x22.0+0.005x20.4

python实现

引入库:

from pulp import *

使用LpProblem函数定义名为prob的变量。它有两个参数,第一个是此问题的任意名称(作为字符串),第二个参数取决于要解决的LP类型,可以是LpMinimize或LpMaximize:

prob = LpProblem("WhiskasModel", LpMinimize)

使用 LpVariable 类创建问题变量 x1x2 。它有四个参数,第一个是表示此变量的任意名称,第二个是此变量的下限,第三个是上限,第四个是数据类型(离散或连续)。第四个参数的选项为LpContinuousLpInteger,其默认值为LpContinuous。如果我们正在建模要生产的罐数,我们需要输入LpInteger,因为它是离散数据。边界可以直接输入为数字,或者为 None 表示没有边界(即正无穷或负无穷),默认值为 None。创建适用于本问题的两个变量:

# 本问题中的鸡肉和牛肉变量
x1 = LpVariable("ChickenPercent",0 , None, LpInteger)
x2 = LpVariable("BeefPercent",0 , None, LpInteger)

添加目标函数:

# 首先添加目标函数
prob += 0.013 * x1 + 0.008 * x2, "每罐猫粮的成本价格"

添加限制条件:

# The five constraints are entered
prob += x1 + x2 == 100, "百分比之和"
prob += 0.100 * x1 + 0.200 * x2 >= 8.0, "蛋白质需求"
prob += 0.080 * x1 + 0.100 * x2 >= 6.0, "脂肪需求"
prob += 0.001 * x1 + 0.005 * x2 <= 2.0, "纤维需求"
prob += 0.002 * x1 + 0.005 * x2 <= 0.4, "盐分需求"

使用 writeLP() 函数将这些信息复制到一个 .lp 文件中,该文件位于你的代码块运行的目录中。一旦代码成功运行,可以使用文本编辑器打开这个 .lp 文件,看看上面的步骤都在做什么:

# 将问题数据写入.lp文件中
prob.writeLP('WhiskasModel.lp')
[BeefPercent, ChickenPercent]

LP问题是使用PuLP选择的求解器来解决的,在这种情况下,solve() 后面的输入括号为空,但是它们可以用来指定要使用的求解器(例如,prob.solve(CPLEX())):

prob.solve(CPLEX())
1

输出求解结果,结果可能是 “Not Solved”, “Infeasible”, “Unbounded”, “Undefined” 或者 “Optimal”:

print("Status:", LpStatus[prob.status])
Status: Optimal

查看各个变量的值:

for v in prob.variables():
    print(v.name, "=", v.varValue)
BeefPercent = 66.0
ChickenPercent = 34.0

输出目标函数的值:

print("每罐猫粮的原材料成本为:", value(prob.objective))
每罐猫粮的原材料成本为: 0.97

完整公式

现在我们将使用所有变量完全公式化问题。虽然可以在上面的方法中加入一些内容将其实现为Python,但我们将看到一种更好的方法,它不会混合问题数据和公式化。这将使更改其他测试的任何问题数据变得更容易。我们将以代数方式定义问题的方式开始:

  1. 确定决策变量,决策变量是我们在罐中包含的不同成分的百分比。由于罐子重100g,这些百分比也代表每种成分包含的克数。请注意,这些百分比必须介于0和100之间。

    x 1 = 一罐猫粮中所用鸡肉的百分比 x 2 = 一罐猫粮中所用牛肉的百分比 x 3 = 一罐猫粮中所用羊肉的百分比 x 4 = 一罐猫粮中所用米饭的百分比 x 5 = 一罐猫粮中所用麦麸的百分比 x 6 = 一罐猫粮中所用凝胶的百分比 x_1=一罐猫粮中所用鸡肉的百分比\\ x_2=一罐猫粮中所用牛肉的百分比\\ x_3=一罐猫粮中所用羊肉的百分比\\ x_4=一罐猫粮中所用米饭的百分比\\ x_5=一罐猫粮中所用麦麸的百分比\\ x_6=一罐猫粮中所用凝胶的百分比 x1=一罐猫粮中所用鸡肉的百分比x2=一罐猫粮中所用牛肉的百分比x3=一罐猫粮中所用羊肉的百分比x4=一罐猫粮中所用米饭的百分比x5=一罐猫粮中所用麦麸的百分比x6=一罐猫粮中所用凝胶的百分比

  2. 制定目标函数。对于Whiskas猫食品问题,目标是最小化每罐猫食品成分的总成本。

    min ⁡ 0.013 x 1 + 0.008 x 2 + 0.010 x 3 + 0.002 x 4 + 0.005 x 5 + 0.001 x 6 \min 0.013x_1+0.008x_2+0.010x_3+0.002x_4+0.005x_5+0.001x_6 min0.013x1+0.008x2+0.010x3+0.002x4+0.005x5+0.001x6

  3. 制定约束条件。Whiskas猫食品问题的约束条件是:

    • 百分比总和必须占整个罐子(= 100%)。

    • 满足规定的营养分析要求。

    “整罐”的约束是:

    x 1 + x 2 + x 3 + x 4 + x 5 + x 6 = 100 x_1+x_2+x_3+x_4+x_5+x_6=100 x1+x2+x3+x4+x5+x6=100

    为了满足营养分析要求,我们需要每100g至少8g蛋白质,6g脂肪,但不超过2g纤维和0.4g盐。为了制定这些约束条件,我们利用以前的每种成分贡献表。这使我们能够制定有关来自成分的蛋白质,脂肪,纤维和盐总贡献的以下约束条件:
    0.100 x 1 + 0.200 x 2 + 0.150 x 3 + 0.000 x 4 + 0.040 x 5 + 0.0 x 6 ≥ 8.0 0.080 x 1 + 0.100 x 2 + 0.110 x 3 + 0.010 x 4 + 0.010 x 5 + 0.0 x 6 ≥ 6.0 0.001 x 1 + 0.005 x 2 + 0.003 x 3 + 0.100 x 4 + 0.150 x 5 + 0.0 x 6 ≤ 2.0 0.002 x 1 + 0.005 x 2 + 0.007 x 3 + 0.002 x 4 + 0.008 x 5 + 0.0 x 6 ≤ 0.4 \begin{aligned} 0.100x_1&+0.200x_2+0.150x_3+0.000x_4+0.040x_5+0.0x_6≥8.0\\ 0.080x_1&+0.100x_2+0.110x_3+0.010x_4+0.010x_5+0.0x_6≥6.0\\ 0.001x_1&+0.005x_2+0.003x_3+0.100x_4+0.150x_5+0.0x_6≤2.0\\ 0.002x_1&+0.005x_2+0.007x_3+0.002x_4+0.008x_5+0.0x_6≤0.4 \end{aligned} 0.100x10.080x10.001x10.002x1+0.200x2+0.150x3+0.000x4+0.040x5+0.0x68.0+0.100x2+0.110x3+0.010x4+0.010x5+0.0x66.0+0.005x2+0.003x3+0.100x4+0.150x5+0.0x62.0+0.005x2+0.007x3+0.002x4+0.008x5+0.0x60.4

python实现
from pulp import *
# 原材料
Ingredients = ["CHICKEN", "BEEF", "MUTTON", "RICE", "WHEAT", "GEL"]

# 成本字典
costs = {
    "CHICKEN": 0.013,
    "BEEF": 0.008,
    "MUTTON": 0.010,
    "RICE": 0.002,
    "WHEAT": 0.005,
    "GEL": 0.001,
}

# 蛋白质字典
proteinPercent = {
    "CHICKEN": 0.100,
    "BEEF": 0.200,
    "MUTTON": 0.150,
    "RICE": 0.000,
    "WHEAT": 0.040,
    "GEL": 0.000,
}

# 脂肪字典
fatPercent = {
    "CHICKEN": 0.080,
    "BEEF": 0.100,
    "MUTTON": 0.110,
    "RICE": 0.010,
    "WHEAT": 0.010,
    "GEL": 0.000,
}

# 纤维字典
fibrePercent = {
    "CHICKEN": 0.001,
    "BEEF": 0.005,
    "MUTTON": 0.003,
    "RICE": 0.100,
    "WHEAT": 0.150,
    "GEL": 0.000,
}

# 盐分字典
saltPercent = {
    "CHICKEN": 0.002,
    "BEEF": 0.005,
    "MUTTON": 0.007,
    "RICE": 0.002,
    "WHEAT": 0.008,
    "GEL": 0.000,
}
# 创建问题
prob2 = LpProblem("The Whiskas Problem", LpMinimize)

创建一个名为ingredient_vars的字典,其中包含LP变量,其下限定义为零。字典的引用键是原料名称,数据为Ingr_IngredientName。 (例如:MUTTON:Ingr_MUTTON)

ingredient_vars = LpVariable.dicts("Ingr", Ingredients, 0)

由于costsingredient_vars现在是以成分名称为参考键的字典,因此可以使用列表推导式轻松提取数据

# 目标函数
prob2 += (
    lpSum([costs[i] * ingredient_vars[i] for i in Ingredients]),
    "Total Cost of Ingredients per can",
)
# 五个限制
prob2 += lpSum([ingredient_vars[i] for i in Ingredients]) == 100, "百分比之和"
prob2 += (
    lpSum([proteinPercent[i] * ingredient_vars[i] for i in Ingredients]) >= 8.0,
    "蛋白质需求",
)
prob2 += (
    lpSum([fatPercent[i] * ingredient_vars[i] for i in Ingredients]) >= 6.0,
    "脂肪需求",
)
prob2 += (
    lpSum([fibrePercent[i] * ingredient_vars[i] for i in Ingredients]) <= 2.0,
    "纤维需求",
)
prob2 += (
    lpSum([saltPercent[i] * ingredient_vars[i] for i in Ingredients]) <= 0.4,
    "盐分需求",
)
# 将问题数据写入.lp文件中
prob2.writeLP('WhiskasModel2.lp')
[Ingr_BEEF, Ingr_CHICKEN, Ingr_GEL, Ingr_MUTTON, Ingr_RICE, Ingr_WHEAT]
prob2.solve(CPLEX())
1
print("求解状态:", LpStatus[prob2.status])
求解状态: Optimal
for v in prob2.variables():
    print(v.name, "=", v.varValue)
Ingr_BEEF = 60.0
Ingr_CHICKEN = 0.0
Ingr_GEL = 40.0
Ingr_MUTTON = 0.0
Ingr_RICE = 0.0
Ingr_WHEAT = 0.0
print("每罐猫粮的原材料成本为:", value(prob2.objective))
每罐猫粮的原材料成本为: 0.52
### Pulp求解器线性规划使用方法 #### 安装PuLP库 在开始之前,需要先安装 `PuLP` 库。可以通过以下命令完成安装[^1]: ```bash pip install pulp ``` #### 构造并求解简单线性规划问题 以下是使用 `PuLP` 解决一个简单的线性规划问题的示例[^2]。 假设我们有如下优化问题: - **目标函数**: 最大化 \( z = 3x + 4y \) - **约束条件**: - \( x + y \leq 8 \) - \( 2x + y \leq 10 \) - \( x, y \geq 0 \) 下面是实现该问题的 Python 代码: ```python from pulp import LpMaximize, LpProblem, LpStatus, lpSum, LpVariable # 创建问题对象 model = LpProblem(name="small-problem", sense=LpMaximize) # 定义决策变量 x = LpVariable(name="x", lowBound=0) # 变量x >= 0 y = LpVariable(name="y", lowBound=0) # 变量y >= 0 # 添加目标函数到模型中 model += (3 * x + 4 * y, "objective") # 添加约束条件到模型中 model += (x + y <= 8, "constraint_1") # 约束1: x + y ≤ 8 model += (2 * x + y <= 10, "constraint_2") # 约束2: 2x + y ≤ 10 # 求解问题 status = model.solve() # 输出结果 print(f"状态: {LpStatus[status]}") print(f"x 的最优值: {x.value()}") print(f"y 的最优值: {y.value()}") print(f"最大化的z值: {model.objective.value()}") ``` 运行上述代码后会得到以下输出(基于具体数据计算得出的结果): ``` 状态: Optimal x 的最优值: 2.0 y 的最优值: 6.0 最大化的z值: 30.0 ``` #### 更多功能介绍 除了基本的功能外,`PuLP` 还提供了许多高级特性,比如支持不同的求解器(如 CPLEX 和 GLPK),以及更复杂的建模能力[^3]。如果需要切换求解器,可以在创建问题时指定参数。例如,使用 GLPK 求解器可写成: ```python from pulp import getSolver solver = getSolver('GLPK') model.solve(solver) ``` #### 总结 通过以上示例可以看出,`PuLP` 是一款非常强大的工具,能够帮助快速构建和求解各种类型的线性规划问题[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

雨落俊泉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值