基于招聘网站的大数据专业相关招聘信息建模与可视化分析

本文运用Python爬虫技术抓取51job网站的大数据职位信息,进行数据清理、统计分析和可视化,揭示了大数据岗位的增长趋势、主要分布地区、行业及薪资水平。通过机器学习预测模型,为求职者提供薪资预期和行业动态参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

需要本项目的可以私信博主!!!

在大数据时代背景下,数据积累导致大数据行业的人才需求快速上升,大量的招聘信息被发布在招聘平台上。深入研究这些信息能帮助相关人士更好地理解行业动态,并对其未来发展进行预测。本文主要通过分析51job网站上的大数据职位招聘信息,进行一次可视化的呈现。

本研究首先使用Python爬虫技术,抓取51job网站的所有大数据相关职位信息。接着利用Python的数据清理技术,处理数据的重复项和异常项。然后,我们使用Python的统计排序技术对数据进行分析,并通过Python数据可视化技术将分析结果呈现出来。最后,我们使用机器学习技术预测大数据相关职位的平均薪资。

根据51job的大数据职位招聘信息可视化结果,我们可以看到大数据招聘岗位正在持续增长,这意味着社会对大数据专业人才的需求也在持续增长。大数据职位主要集中在一线城市,大多数职位来自私企和上市公司,主要集中在计算机软件、房地产和互联网行业。同时,大数据职位的薪资和福利待遇一般都很优厚。这些信息为求职者提供了选择大数据职位的参考。

通过预测模型,求职者可以提前了解即将应聘的大数据职位的预期薪资,预测模型的准确率可高达99%。

基于网络爬虫技术实现51job网站上大数据专业相关招聘信息的爬取,主要利用的是网络爬虫技术中的xpath方法和谷歌浏览器的开发者工具实现。

首先利用谷歌浏览器登录51job网站,利用谷歌浏览器的开发者工具查看网页中的cookie、useragent等标识,并且通过网站的搜索功能和翻页功能查看url的变化。

图3-1  谷歌浏览器的开发者工具页面

 

在以上的一系列爬取操作之后,共爬取到54950条数据,主要获取了十二个字段的大数据专业相关岗位信息,具体的字段以及含义如下表。

图3-2  爬取数据运行结果

表3-1  字段的含义解释

字段

含义

job_name

职位名称

company_name

公司名称

low_salary

最低薪资(万/月)

High_salary

最高薪资(万/月)

yaoqiu

要求

job_place

工作地点

company_nature

公司性质

job_content

工作内容

company_content

公司详情

release

发布时间

job_class

职位类别

fuli

公司福利

    首先是利用collections库的Counter函数对数据的重复值进行查看,这边主要是对岗位的url进行了统计查看,可以通过结果看出,每个url都只出现了一次,也就是说,每条数据都只出现了一次,并未出现重复值,因此,不用对数据进行去重操作。

图3-3  重复值统计结果

图3-4  最高薪资异常值处理前后对比图

图3-5  最低资异常值处理前后对比图

图3-6  最高薪资和最低薪资盒图

 

图3-7  占比率前十类别运行结果

图3-8  平均最高薪资前十类别运行结果

图3-9  平均最低薪资前十类别运行结果

从岗位信息来看,每个岗位所在的城市不同,而每个城市的发展水平有差异,

图3-10  大数据相关职位主要分布的前十城市运行结果

通过岗位信息对各个公司的大数据专业相关岗位数量进行统计分析。首先,通过列表将各个公司性质的大数据专业相关岗位进行统计,然后通过排序得出职位数量最多的前十个公司性质。

图3-11  公司性质前十运行结果

大数据专业相关岗位也分为很多种不同的岗位,

图3-12  数量前十的岗位运行结果

目前需求量最大的十个岗位,令求职者关注的应该是这些岗位的薪资,因此,对这十个岗位进行了平均最高薪资和平均最低薪资的分析。

图3-13  前十岗位对应的最高和最低薪资运行结果

为了验证大数据专业相关岗位在当前社会的真实发展趋势,以及社会对该岗位的需求增长趋势,对每日发布岗位的数量进行分析。根据日期对发布的岗位数量进行统计。

图3-14  每日发布数量运行结果

 

根据职位类别的数量统计,对所有职位类别进行词云图呈现,从词云图可以看出计算机软件、互联网、电子商务、计算机服务等职位类别对大数据专业相关岗位的需求比较大,求职者在求职的时候可以先考虑这些岗位类别的招聘。

图3-15  职位类别的词云图展示

图3-16  职位类别的最高薪资和最低薪资的散点热力图展示

图3-17  各类别平均薪资的分箱图展示

根据占比率前十的职位类别统计,对职位类别进行环状扇形图的呈现。根据环状扇形形图可以看出,计算机软件、房地产、互联网/电子商务的职位占比是比较大的,如果求职者想要取得更多的就业机会,可以优先选择这三个职位类别。

图3-18  占比率前十的职位类别环状扇形图展示

根据平均最低薪资前十和平均最高薪资的职位类别统计,对职位类别进行柱状图的呈现。根据柱状图,可以看到前十职位类别的平均最低薪资都在1.4万/月以上,前十职位类别的平均最高薪资都在2.2万/月以上。

图3-19  最低薪资前十职位类别的柱状图展示

图3-20  最高薪资前十职位类别的柱状图展示

根据各城市的大数据专业相关岗位数量统计,对城市职位分布进行中国地图热力图呈现。从图中可以看出,上海是大数据专业相关岗位需求量最大的城市,其次是广东,第三梯队是北京、江苏,浙江、四川和湖北排在第四梯队。可以看出,北上广作为一线城市,对大数据专业相关岗位的需求是更为迫切的。

图3-21  各城市大数据岗位数量的中国地图热力图展示

根据前十公司性质的大数据专业相关岗位数量统计,对公司性质进行条形图呈现。从条形图可以看出,民营公司占比最大,占66.15%,其次是上市公司和国企。

图3-22  岗位数量前十公司性质的条形图展示

根据各职位名称的数量统计,对职位数量进行条形图呈现和环状扇形图呈现。从条形图和环状扇形图可以看出,大数据开发工程师需求最旺盛,占比48%。其次是大数据分析工程师,占比15%。

图3-23  发布数量前十岗位的条形图展示

图3-24  发布数量前十岗位占比的环状扇形图展示

根据前十职位的平均最高薪资和最低薪资统计,对薪资进行双折线图进行呈现。从图中可以看出,这些薪资岗位的薪资都相对平均,十分稳定。

3-25  前十岗位的最高和最低薪资的双折线图展示

根据每日发布的职位数量统计

3-26  每日发布岗位数量的折线图展示

将数据中的福利字段(fuli)进行词云图呈现

3-27  岗位福利的词云图展示

 

图3-28  特征的相关性热力图展示

图3-29  随机森林模型预测准确率运行结果

图3-30  xgboost预测准确率运行结果

图3-31  随机森林的平均薪资预测结果

利用数据对模型的训练过程,我利用plot_learning_curve()对模型的学习曲线进行了呈现,可以看出,模型在训练的过程中,准确率是在不断增加的。

图3-32  模型学习曲线折线图展示


 

每文一语

纸上得来终觉浅,绝知此事要躬行

<think>好的,用户正在寻找大数据招聘、数据分析、预测和推荐系统相关的职位或资料,特别是职位要求和技能方面的信息。首先,我需要从提供的参考文献中提取相关信息,并结合行业常见要求来回答。 根据引用[1],系统涉及大数据技术如Spark和Hive,进行数据存储、处理、分析和预测,使用机器学习算法。引用[2]提到数学模型、算法步骤,以及薪资预测的代码实例,说明需要编程和机器学习技能。引用[3]提到行业趋势分析,可能需要统计学和数据可视化能力。引用[4]展示了数据处理流程,强调数据清洗和工具使用。 接下来要整理职位类型,比如大数据工程师、数据分析师等。然后列出每个职位的要求和技能,包括技术方面如编程语言、大数据框架、机器学习库,以及工具如Hive、Spark。同时,软技能如业务理解和沟通能力也很重要。最后,根据用户需求推荐学习资源,帮助提升相关技能。 需要确保回答结构清晰,分点明确,引用正确,并且语言自然。同时要检查是否符合之前的格式要求,比如数学公式的格式是否正确,独立公式是否单独成段。最后生成相关问题,帮助用户进一步探索。</think>### 大数据招聘数据分析相关职位要求及技能解析 #### 一、主要职位类型及核心要求 1. **大数据工程师/架构师** - **职责**: 负责搭建数据存储处理平台(如基于Hive的数据仓库),设计数据清洗ETL流程,优化Spark计算性能。 - **技能要求**: - 熟悉分布式计算框架(Spark、Hadoop),掌握Hive SQL数据管理[^1][^2] - 熟练使用Python/Scala进行数据处理,熟悉Pandas、NumPy等库 - 理解数据湖、数据仓库架构,具备数据治理经验 - 数学基础要求:掌握线性代数概率统计,例如协方差矩阵计算:$$ \Sigma = \frac{1}{n-1} \sum_{i=1}^n (X_i - \mu)(X_i - \mu)^T $$ 2. **数据分析师(招聘领域)** - **职责**: 分析招聘需求趋势(如行业岗位分布、薪资水平),构建可视化看板,支持企业决策[^3] - **技能要求**: - 精通SQLBI工具(Tableau、Power BI) - 掌握统计分析方法(如假设检验、回归分析),能解读$R^2$值等指标 - 熟悉行业分析框架,例如通过卡方检验验证行业需求变化显著性 3. **预测算法工程师** - **职责**: 开发招聘需求预测模型(如时间序列预测、机器学习模型),优化推荐系统算法 - **技能要求**: - 熟悉机器学习算法(随机森林、LSTM等),掌握TensorFlow/PyTorch框架 - 理解协同过滤、知识图谱在推荐系统中的应用,例如用户-岗位相似度计算:$sim(u,i) = \frac{\sum_{j}(r_{uj} - \bar{r}_u)(r_{ij} - \bar{r}_i)}{\sqrt{\sum_{j}(r_{uj} - \bar{r}_u)^2} \sqrt{\sum_{j}(r_{ij} - \bar{r}_i)^2}}$ - 具备A/B测试设计效果评估能力 4. **数据产品经理(招聘方向)** - **职责**: 定义招聘数据分析产品功能,设计用户画像推荐策略[^1] - **技能要求**: - 熟悉用户行为分析(如漏斗模型、留存率计算) - 掌握Axure等原型设计工具,能撰写PRD文档 - 理解数据埋点指标体系建设 #### 二、共性技术要求 1. **编程能力** - Python/Java/Scala至少精通一门,熟悉常用算法(如快速排序时间复杂度分析$O(n \log n)$) ```python # 示例:招聘数据预处理代码片段[^4] import pandas as pd df = pd.read_csv('recruitment_data.csv') df = df.drop_duplicates().fillna(method='ffill') ``` 2. **大数据工具链** - 数据处理:Spark SQL、Flink - 数据存储:Hive、HBase、Redis - 任务调度:Airflow、DolphinScheduler 3. **机器学习专项** - 特征工程:维度约简(如PCA算法:$$ X_{\text{reduced}} = X \cdot W_k $$) - 模型调优:网格搜索、贝叶斯优化 #### 三、进阶能力要求 1. **领域知识** - 熟悉人力资源行业指标(岗位供需比$=\frac{\text{求职者数量}}{\text{岗位数量}}$) - 了解劳动经济学基本原理 2. **软技能** - 能够将业务问题转化为数据问题(如将"员工流失预测"建模为分类问题) - 具备跨部门协作能力,能向非技术人员解释技术方案 #### 四、学习资源推荐 1. **技术体系构建** - 大数据基础:《Hive编程指南》 - 算法进阶:《机器学习实战:基于Scikit-Learn和TensorFlow》 2. **行业实践** - 参考厦门人才网招聘数据分析项目[^4],复现数据清洗到可视化的完整流程
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王小王-123

您觉得舒心就点一点吧~~~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值