class Node(object):
# """节点"""
def __init__(self,elem):
self.elem = elem
self.next = None
class SingleLinkList(object):
def __init__(self,node=None):
self._head = node
# """加下划线代表私有属性"""
def is_empty(self):
return self._head == None
def length(self):
#cur为游标卡尺
cur = self._head
# """等于起始节点"""
#count记录数量
count = 0
while cur !=None:
count += 1
cur = cur.next
return count
def travel(self):
cur = self._head
while cur != None:
print(cur.elem,end=" ")
cur = cur.next
print("")
def add(self,item):
"""链表头部添加元素"""
node = Node(item)
node.next = self._head
self._head = node
def append(self,item):
"""链表尾部添加元素item是元素"""
node = Node(item)
if self.is_empty():
self._head = node
else:
cur = self._head
while cur.next != None:
cur = cur.next
cur.next = node
def insert(self,pos,item):
"""指定位置插入元素"""
if pos <= 0:
self.add(item)
elif pos > (self.length()-1):
self.append(item)
else:
pre = self._head
count = 0
while count < (pos-1):
count += 1
pre = pre.next
node = Node(item)
node.next = pre.next
pre.next = node
def remove(self,item):
"""删除节点"""
cur = self._head
pre = None
while cur != None:
if cur.elem == item:
#先判断此节点是不是头节点
if cur == self._head:
self._head = cur.next
else:
pre.next = cur.next
break
else:
pre = cur
cur = cur.next
def search(self, item):
"""查找节点是否存在"""
cur = self._head
while cur != None:
if cur.elem == item:
return Ture
else:
cur = cur.next
return False
# node = Node(100)
# single_obj = SingleLinkList()
# single_obj.travel()
if __name__ == "__main__":
ll = SingleLinkList()
print(ll.is_empty())
print(ll.length())
ll.append(1)
print(ll.is_empty())
print(ll.length())
ll.append(2)
ll.add(6)
ll.append(3)
ll.append(4)
ll.append(5)
ll.insert(-1,9)
ll.travel()
ll.insert(3,100)
ll.travel()
ll.insert(9,200)
ll.travel()
ll.remove(100)
ll.travel()
ll.remove(9)
ll.travel()
ll.remove(200)
ll.travel()
结果
True
0
False
1
9 6 1 2 3 4 5
9 6 1 100 2 3 4 5
9 6 1 100 2 3 4 5 200
9 6 1 2 3 4 5 200
6 1 2 3 4 5 200
6 1 2 3 4 5
链表与顺序表的对比
链表失去了顺序表随机读取的优点,同时链表由于增加了结点的指针域,空间开销比较大,但对存储空间的使用要相对灵活。
链表与顺序表的各种操作复杂度如下所示:
操作 链表 顺序表
访问元素 O(n) O(1)
在头部插入/删除 O(1) O(n)
在尾部插入/删除 O(n) O(1)
在中间插入/删除 O(n) O(n)
注意虽然表面看起来复杂度都是 O(n),但是链表和顺序表在插入和删除时进行的是完全不同的操作。链表的主要耗时操作是遍历查找,删除和插入操作本身的复杂度是O(1)。顺序表查找很快,主要耗时的操作是拷贝覆盖。因为除了目标元素在尾部的特殊情况,顺序表进行插入和删除时需要对操作点之后的所有元素进行前后移位操作,只能通过拷贝和覆盖的方法进行。