减小模型复杂度

本文介绍了正则化在防止机器学习模型过拟合中的作用,通过在Loss函数中添加L1和L2范数限制高次参数,以及详细解释了L1正则化(参数绝对值之和)和L2正则化(参数平方和的平方根)的区别。
摘要由CSDN通过智能技术生成

1.正则化

正则化是用来防止模型过拟合而采取的手段。我们对Loss函数增加一个限制条件,限制其较高次的参数大小不能过大。如回归模型:

h_{_{\theta }}(x)=\theta _{0}+\theta _{1}x_{1}+\theta _{2}x_{2}^{2}+\theta _{3}x_{3}^{3}+\theta _{4}x_{4}^{4}

正是那些高次项导致了过拟合的产生,所以如果我们能让这些高次项的系数接近于0的话,我们就能很好的拟合了,因此,我们对代价函数J(\theta )进行修改如下:

min_{\theta }J(\theta )=min_{\theta }\frac{1}{2m}[\sum_{i=1}^{m}(h_{\theta }(x^{i})-y^{i})^{2}+1000\theta_{3}^{2}+10000\theta _{4}^{2}]

我们在方程中增加了两个限制条件,分别对\theta _{3}\theta _{4}进行限制,不能让他们过高。很直观的看出,要想使J(\theta )最小化,不仅仅需要h_{\theta }(x^{i})足够拟合y^{i},同时还需要减少\theta _{3}\theta _{4}
 

损失函数后面会添加一个额外项,常用的额外项一般有两种,称作 L1正则化和L2正则化,或者L1范数和L2范数,是为了限制模型的参数,防止模型过拟合而加在损失函数后面的一项。

区别:

L1是模型各个参数的绝对值之和

L2是模型各个参数的平方和的开方值

1.1 L1正则化

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值