李宏毅机器学习 深度学习介绍

本文回顾了深度学习的发展历程,从感知机到深度神经网络的突破,强调了GPU在加速计算中的作用。深度学习的三个关键步骤包括神经网络构建、模型评估和选择最优函数。全连接前馈神经网络作为主要模型被讨论,解释了深度学习为何能通过多层隐藏层实现复杂函数表达。模型评估使用损失函数,如交叉熵,并通过梯度下降优化参数。尽管更深的网络通常带来更好的性能,但网络结构的选择和优化仍然是挑战。
摘要由CSDN通过智能技术生成

深度学习

深度学习的发展趋势

回顾一下deep learning的历史:

  • 1958: Perceptron (linear model)
  • 1969: Perceptron has limitation
  • 1980s: Multi-layer perceptron
    • Do not have significant difference from DNN today
  • 1986: Backpropagation
    • Usually more than 3 hidden layers is not helpful
  • 1989: 1 hidden layer is “good enough”, why deep?
  • 2006: RBM initialization (breakthrough)
  • 2009: GPU
  • 2011: Start to be popular in speech recognition
  • 2012: win ILSVRC image competition 感知机(Perceptron)非常像我们的逻辑回归(Logistics Regression)只不过是没有sigmoid激活函数。09年的GPU的发展是很关键的,使用GPU矩阵运算节省了很多的时间。

深度学习的三个步骤

在这里插入图片描述

  • Step1:神经网络(Neural network)
  • Step2:模型评估(Goodness of function)
  • Step3:选择最优函数(Pick best function)

对于深度学习的Step1就是神经网络(Neural Network)

Step1:神经网络

神经网络(Neural network)里面的节点,类似我们的神经元。

在这里插入图片描述

神经网络可以有很多不同的连接方式,这样会在这个神经网络里面产生不同的结构(structure),我们有很多逻辑回归函数,其中每个逻辑回归都有自己的权重weight和自己的偏差bias,这些权重和偏差就是参数 θ \theta θ。 这些神经元的连接方式可以手动设计。

完全连接前馈神经网络(Fully Connect Feedforward Network)

1.介绍

概念:前馈(feedforward)也可以称为前向,从信号流向来理解就是输入信号进入网络后,信号流动是单向的,即信号从前一层流向后一层,一直到输出层,其中任意两层之间的连接并没有反馈(feedback),亦即信号没有从后一层又返回到前一层。

在这里插入图片描述

在这里插入图片描述

当输入0和0时,则得到0.51和0.85,所以一个神经网络如果权重和偏差都知道的话就可以看成一个函数,他的输入是一个向量,对应的输出也是一个向量。不论是做回归模型(linear model)还是逻辑回归(logistics regression)都是定义了一个函数集(function set)。我们可以给上面的结构的参数设置为不同的数,就是不同的函数(function)。这些可能的函数(function)结合起来就是一个函数集(function set)。这个时候你的函数集(function set)是比较大的,是以前的回归模型(linear model)等没有办法包含的函数(function),所以说深度学习(Deep Learning)能表达出以前所不能表达的情况。

2.全连接和前馈的理解

  • 输入层(Input Layer):1层
  • 隐藏层(Hidden Layer):N层
  • 输出层(Output Layer):1层

在这里插入图片描述

  • 为什么叫全连接:因为layer1和layer2之间两两都有连接,所以叫做Fully Connect;
  • 为什么叫前馈:因为现在传递的方向是由后往前传,所以叫做Feedforward。
深度的理解

Deep = Many hidden layer,常见的例子如下图:

在这里插入图片描述

  • 2012 AlexNet:8层
  • 2014 VGG:19层
  • 2014 GoogleNet:22层
  • 2015 Residual Net:152层
  • 101 Taipei:101层

随着层数变多,错误率降低,随之运算量增大,通常都是超过亿万级的计算。对于这样复杂的结构,我们一定不会一个一个的计算,对于亿万级的计算,使用loop循环效率很低。

这里我们就引入矩阵计算(Matrix Operation)能使得我们的运算的速度以及效率高很多:

在这里插入图片描述

计算方法:sigmoid(权重w【黄色】 * 输入【蓝色】+ 偏移量b【绿色】)= 输出

其中sigmoid更一般地说是激活函数(activation function),现在已经很少用sigmoid做激活函数。

如果hidder layer有很多层,计算过程如下:

在这里插入图片描述

a 1 = σ ( w 1 x + b 1 ) a 2 = σ ( w 1 a 1 + b 2 ) ⋅ ⋅ ⋅ y = σ ( w L a L − 1 + b L ) a^1 = \sigma (w^1x+b^1) \\ a^2 = \sigma (w^1a^1+b^2) \\ ··· \\ y = \sigma (w^La^{L-1}+b^L) a1=σ(w1x+b1)a2=σ(w1a1+b2)y=σ(wLaL1+bL)
从结构上看每一层的计算都是一样的,也就是用计算机进行并行矩阵运算。 这样写成矩阵运算的好处是,你可以使用GPU加速。

本质:通过隐藏层进行特征转换

把隐藏层通过特征提取来替代原来的特征工程,这样在最后一个隐藏层输出的就是一组新的特征(相当于黑箱操作)而对于输出层,其实是把前面的隐藏层的输出当做输入(经过特征提取得到的一组最好的特征)然后通过一个多分类器Multi-class Classifier(可以是softmax函数)得到最后的输出y。

在这里插入图片描述

示例:手写数字识别

举一个手写数字体识别的例子:
输入:一个16*16=256维的向量,每个pixel对应一个dimension,有颜色用(ink)用1表示,没有颜色(no ink)用0表示
输出:10个维度,每个维度代表一个数字的置信度。

在这里插入图片描述

在这个问题中,唯一需要的就是一个函数,输入是256维的向量,输出是10维的向量,我们所需要求的函数就是神经网络这个函数。

在这里插入图片描述

从上图看神经网络的结构决定了函数集(function set),所以说网络结构(network structured)很关键。

在这里插入图片描述

接下来有几个问题:

  • 神经网络有多少层,每层多少个神经元

一般是经验+直觉方式。对于一些机器学习相关问题,一般用特征工程来提取特征;对于深度学习,只需要设计神经网络模型即可。对于语音识别和影像识别,深度学习是个好的方法,因为特征工程提取特征并不容易。

  • 结构可以自动确定吗

有很多设计方法可以让机器自动找到神经网络的结构,如进化人工神经网络(Evolutionary Artificial Neural Networks),但是这些方法不是很普及。

  • 可以自己设计网络结构吗

可以,如CNN卷积神经网络(Convolutional Neural Network)

Step2:模型评估

损失示例

在这里插入图片描述

对于模型的评估,我们一般采用损失函数来反应模型的好差,所以对于神经网络来说,我们采用交叉熵(cross entropy)函数来对 y y y y ^ \hat{y} y^的损失进行计算,接下来我们就是调整参数,让交叉熵越小越好。

对于单个结果而言的计算公式为:
C r o s s E n t r o p y : C ( y , y ^ ) = − ∑ i = 1 10 y i ^ ln ⁡ y i Cross Entropy: C(y, \hat{y}) = -\sum_{i=1}^{10}\hat{y_i}\ln y_i CrossEntropy:C(y,y^)=i=110yi^lnyi

总体损失

在这里插入图片描述

对于损失,我们不单单要计算一笔数据的,而是要计算整体所有训练数据的损失,然后把所有的训练数据的损失都加起来,得到一个总体损失L。接下来就是在function set里面找到一组函数能最小化这个总体损失L,或者是找一组神经网络的参数 θ \theta θ,来最小化总体损失L。
L = ∑ n = 1 N C n L = \sum_{n=1}^NC^n L=n=1NCn

Step3:选择最优函数

如何找到最优的函数和最好的一组参数呢,这里使用的就是梯度下降。

在这里插入图片描述
在这里插入图片描述

具体流程: θ \theta θ是一组包含权重和偏差的参数集合,随机找一个初始值,接下来计算每个参数对应偏微分,得到的一个偏微分的集合 ∇ L \nabla{L} L就是梯度,然后可以通过梯度去不断更新新的参数,从而得到一组最好的参数使得损失函数值最小。

反向传播backpropagation

在这里插入图片描述

在神经网络中计算损失一个有效的防范就是反向传播,可以用很多框架来计算损失,如TensorFlow、theano、Pytorch等。

思考

为什么要用深度学习,深层架构带来哪些好处?那是不是隐藏层越多越好?

隐藏层越多越好?

在这里插入图片描述

从图中展示的结果看,毫无疑问,层次越深效果越好~~

普遍性定理

在这里插入图片描述

参数多的model拟合数据很好是很正常的。下面有一个通用的理论: 对于任何一个连续的函数,都可以用足够多的隐藏层来表示。那为什么我们还需要‘深度’学习呢,直接用一层网络表示不就可以了?在接下来的课程我们会仔细讲到

References

  1. 深度学习简介
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值