Deepseek本地部署后,还需要联网么?

        

目录

一、本地部署训练好的大模型,是怎么存储它学到的知识的。

1. 模型权重(Weights)

2. 模型架构(Architecture)

3. 词表(Vocabulary / Tokenizer)

4. 优化策略与量化(Quantization)

5. 缓存和索引(用于加速推理)

二、以西游记中的主要人物来看大模型是如何存储和处理的

1. 输入数据阶段(模型训练前)

2. 模型存储阶段(权重训练)

3. 推理阶段(模型使用时)

4. 与数据库存储的对比

5. 补充:如何增强模型的知识?

三、这样的知识存储方式更节省空间吗

        1. 对比:大模型 vs. 传统数据库

        2. 哪种方式更省空间?

        (1) 大模型更耗空间

        (2) 但大模型更省空间(在某些场景)

        3. 结论:谁更适合存储知识?

         最优方案


        DeepSeek本地化部署后不需要联网请求其接口,因为整个模型和数据均在本地运行,实现了完全离线使用,除非你需要它去网络搜索新知识。

        那么问题来了,既然它不需要联网,它是怎么存储和记忆这么多知识的呢?

一、本地部署训练好的大模型,是怎么存储它学到的知识的。

        其实本地部署的训练好的大模型(如 LLaMA、GPT、BERT 之类的 Transformer 模型)会将其学到的知识存储在模型权重(weights)和参数(parameters)中,而不是我们理解的传统的数据库或知识库。

        大模型的知识并不像数据库那样存储为明确的事实,而是以权重矩阵的方式编码在神经网络参数中,所有推理过程都是基于这些权重的计算。如果需要引入额外的知识,可以使用微调(Fine-tuning)检索增强(RAG) 技术来扩展模型的能力。

主要存储结构和方式如下:

1. 模型权重(Weights)

  • 训练好的大模型主要由数百万到数十亿个参数(通常是浮点数)组成,这些参数存储在张量(Tensor)结构中。
  • 这些权重决定了模型对不同输入的响应方式,本质上是深度神经网络的连接强度
  • 存储格式通常是:
    • PyTorch 模型:model.pth / model.pt
    • TensorFlow 模型:model.ckpt / saved_model.pb
    • ONNX 格式:model.onnx
    • Hugging Face 格式:多个 pytorch_model.bin / tf_model.h5 文件
    • GGUF 格式(适用于本地量化部署)

2. 模型架构(Architecture)

  • 结构定义了模型如何处理输入数据,包括层的排列方式、激活函数、归一化方法等。
  • 例如,GPT 模型的架构信息通常包含:
    • Transformer 层的数量(如 7B、13B、30B 参数模型)
    • 多头注意力的数量
    • 前馈神经网络的宽度
  • 这一部分通常以 Python 代码(如 config.jsonmodel.py)的形式存储,也可能集成在权重文件中。

3. 词表(Vocabulary / Tokenizer)

  • 大模型并不直接处理文本,而是通过分词器(Tokenizer)将文本转换成token ID
  • 分词器的字典(如 vocab.json / tokenizer.json)决定了模型如何理解词汇,并影响最终的生成效果。

4. 优化策略与量化(Quantization)

  • 由于大模型的权重可能过大,部署时常用量化技术(如 16-bit、8-bit、4-bit 量化)来减少存储需求。
  • 例如:
    • fp32(32-bit 浮点数)— 最高精度,存储占用最大
    • fp16(16-bit 浮点数)— 训练和推理的常见选择
    • int8 / int4(整数量化)— 极限压缩,但可能损失精度

5. 缓存和索引(用于加速推理)

  • 部署时,为了加速推理,可能会引入KV 缓存(Key-Value Cache):
    • 存储过去推理的中间结果,减少重复计算。
  • 一些模型(如 RAG 检索增强生成)可能会使用数据库(如 FAISS、Milvus)存储额外的知识索引,以增强问答能力。

二、以西游记中的主要人物来看大模型是如何存储和处理的

1. 输入数据阶段(模型训练前)

在训练过程中,大模型会读取大量文本,包括:

  • 公开数据集(如维基百科、书籍、新闻)
  • 网络文章(如果模型允许使用)
  • 专门的语料(如《西游记》的电子版)
《西游记》是中国四大名著之一,讲述了唐僧师徒四人西行取经的故事。主要人物包括:
- 唐僧:慈悲为怀,意志坚定的取经人。
- 孙悟空:聪明机智,法力无边的齐天大圣。
- 猪八戒:贪吃好色,力大无穷的天蓬元帅。
- 沙僧:忠厚老实,任劳任怨的卷帘大将。

这些文本会被分词器(Tokenizer)处理成 Token ID,然后输入模型进行训练。

2. 模型存储阶段(权重训练)

知识点的存储方式

  • 训练时,模型并不会“硬编码”出类似数据库的表,而是通过参数优化来调整神经网络的权重矩阵,以便在未来推理时能更好地预测输出。
  • 在大量文本的训练过程中,模型的 Transformer 层会学到:
    • 角色与《西游记》的关联(例如“孙悟空”与“猴子”、“齐天大圣”相关)
    • 人物的特性(例如“猪八戒”与“贪吃”、“懒惰”相关)
    • 情节逻辑(例如“孙悟空保护唐僧”)

存储示意

  • 假设模型是一个大网络,含有数千层的权重矩阵,类似:
    权重矩阵:
    孙悟空 -> 0.9 齐天大圣
    孙悟空 -> 0.85 火眼金睛
    猪八戒 -> 0.95 嫦娥
    唐僧 -> 0.92 西天
    
  • 这些不是数据库中的明确存储,而是隐含在 数十亿个参数 的权重中,每当用户提问时,模型会动态地从这些权重中恢复信息

3. 推理阶段(模型使用时)

当你问:

《西游记》的主要人物有哪些?

模型不会直接查数据库,而是:

  1. 先用 分词器 把这句话转成 Token ID。
  2. Transformer 层会利用已有的训练权重进行计算,找出最可能的回答:

    ["唐僧", "孙悟空", "猪八戒", "沙僧"]

  3. 经过解码(Decoding)后,转换回自然语言:

    《西游记》的主要人物包括唐僧、孙悟空、猪八戒和沙僧。

这说明,知识点不是简单存成表格,而是分布在权重里,靠推理计算出来的

4. 与数据库存储的对比

特点大模型存储方式(神经网络)数据库存储方式(SQL/NoSQL)
存储方式权重矩阵,隐含存储结构化数据,明确存储
访问方式计算+推理查询(SQL/Key-Value)
更新方式需要微调(Fine-tune)直接插入或更新
误差可能有细微偏差结果精确可控

5. 补充:如何增强模型的知识?

如果模型的答案不够准确,比如它对一些细节记忆不清,可以:

  1. 微调(Fine-tuning)
    • 额外提供《西游记》的训练文本,让模型在特定领域表现更好。
  2. RAG(检索增强生成,Retrieval-Augmented Generation)
    • 在推理时,先用数据库(如 FAISS/Milvus)查询《西游记》的相关内容,再让模型回答,类似书+大脑的组合

大模型对《西游记》的知识不是直接存储,而是通过权重矩阵的方式,结合 Transformer 结构隐含编码。当你提问时,它会用训练中的模式匹配推理能力来找出答案。这与数据库查找不同,更像是一种“类人的记忆”方式!

三、这样的知识存储方式更节省空间吗

大模型的存储方式相比传统数据库,在某些方面更省空间,但在另一些方面更耗空间,主要取决于存储的粒度查询的需求


1. 对比:大模型 vs. 传统数据库

存储方式大模型(神经网络权重)数据库(SQL/NoSQL)
存储单位权重矩阵(浮点数参数)结构化表、文档、Key-Value
信息存储方式分布式存储在整个模型参数中显式存储(行/列/键值对)
存储空间更大(数 GB~TB 级)更小(只存文本/数值)
查询速度更快(推理一步生成)更快(索引+检索)
存储精确性不精准(受训练数据影响)精准(数据即答案)
可更新性需要重新训练或微调直接插入或更新

2. 哪种方式更省空间?

(1) 大模型更耗空间

  • 大模型需要存储大量参数,即使是小型模型(如 7B 参数)也可能占据几十 GB

    • 7B 参数(GPT-3.5 级别):
      • 7 * 10⁹ 个 16-bit 浮点数(FP16)
      • 14 GB
    • 65B 参数(LLaMA2-65B):
      • 65 * 10⁹ 个 FP16
      • 130 GB
  • 这些权重并不是直接存储知识的文本,而是分布式存储的计算参数,包含推理所需的所有信息。

  • 传统数据库存储的文本更紧凑

    • 例如:
      ID | 角色   | 介绍
      --------------------------------
      1  | 唐僧  | 取经人
      2  | 孙悟空 | 齐天大圣
      3  | 猪八戒 | 天蓬元帅
      4  | 沙僧  | 卷帘大将
      

    • 这种结构化数据,几 KB 即可存储完整的《西游记》人物信息,远比大模型存储的权重矩阵节省空间。

(2) 但大模型更省空间(在某些场景)

  • 如果要存储庞大的知识库(比如全网知识),数据库需要海量表、索引、全文搜索,甚至需要TB 级别的存储
  • 大模型可以用数百 GB 权重来概括整个互联网的知识,并且推理时不用查表,存取更快

3. 结论:谁更适合存储知识?

  • 如果是小规模、精确知识(如《西游记》人物表)→ 数据库更省空间
  • 如果是大规模、多领域知识(如通识问答)→ 大模型更省空间(因为数据库需要 TB 级别存储,而模型可能只要几百 GB)。
  • 如果知识需要频繁更新 → 数据库更合适(模型更新需要重新训练)。

💡 最优方案

现在很多应用使用混合存储

  • 基础知识靠数据库(SQL/NoSQL 存精准数据)。
  • 复杂推理靠大模型(从权重中“想”出答案)。
  • 结合 RAG(检索增强生成),用数据库查找数据,再让大模型生成自然语言回答,存储高效,回答精准
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值