目录
DeepSeek本地化部署后不需要联网请求其接口,因为整个模型和数据均在本地运行,实现了完全离线使用,除非你需要它去网络搜索新知识。
那么问题来了,既然它不需要联网,它是怎么存储和记忆这么多知识的呢?
一、本地部署训练好的大模型,是怎么存储它学到的知识的。
其实本地部署的训练好的大模型(如 LLaMA、GPT、BERT 之类的 Transformer 模型)会将其学到的知识存储在模型权重(weights)和参数(parameters)中,而不是我们理解的传统的数据库或知识库。
大模型的知识并不像数据库那样存储为明确的事实,而是以权重矩阵的方式编码在神经网络参数中,所有推理过程都是基于这些权重的计算。如果需要引入额外的知识,可以使用微调(Fine-tuning) 或 检索增强(RAG) 技术来扩展模型的能力。
主要存储结构和方式如下:
1. 模型权重(Weights)
- 训练好的大模型主要由数百万到数十亿个参数(通常是浮点数)组成,这些参数存储在张量(Tensor)结构中。
- 这些权重决定了模型对不同输入的响应方式,本质上是深度神经网络的连接强度。
- 存储格式通常是:
- PyTorch 模型:
model.pth
/model.pt
- TensorFlow 模型:
model.ckpt
/saved_model.pb
- ONNX 格式:
model.onnx
- Hugging Face 格式:多个
pytorch_model.bin
/tf_model.h5
文件 - GGUF 格式(适用于本地量化部署)
- PyTorch 模型:
2. 模型架构(Architecture)
- 结构定义了模型如何处理输入数据,包括层的排列方式、激活函数、归一化方法等。
- 例如,GPT 模型的架构信息通常包含:
- Transformer 层的数量(如 7B、13B、30B 参数模型)
- 多头注意力的数量
- 前馈神经网络的宽度
- 这一部分通常以 Python 代码(如
config.json
或model.py
)的形式存储,也可能集成在权重文件中。
3. 词表(Vocabulary / Tokenizer)
- 大模型并不直接处理文本,而是通过分词器(Tokenizer)将文本转换成token ID。
- 分词器的字典(如
vocab.json
/tokenizer.json
)决定了模型如何理解词汇,并影响最终的生成效果。
4. 优化策略与量化(Quantization)
- 由于大模型的权重可能过大,部署时常用量化技术(如 16-bit、8-bit、4-bit 量化)来减少存储需求。
- 例如:
fp32
(32-bit 浮点数)— 最高精度,存储占用最大fp16
(16-bit 浮点数)— 训练和推理的常见选择int8 / int4
(整数量化)— 极限压缩,但可能损失精度
5. 缓存和索引(用于加速推理)
- 部署时,为了加速推理,可能会引入KV 缓存(Key-Value Cache):
- 存储过去推理的中间结果,减少重复计算。
- 一些模型(如 RAG 检索增强生成)可能会使用数据库(如 FAISS、Milvus)存储额外的知识索引,以增强问答能力。
二、以西游记中的主要人物来看大模型是如何存储和处理的
1. 输入数据阶段(模型训练前)
在训练过程中,大模型会读取大量文本,包括:
- 公开数据集(如维基百科、书籍、新闻)
- 网络文章(如果模型允许使用)
- 专门的语料(如《西游记》的电子版)
《西游记》是中国四大名著之一,讲述了唐僧师徒四人西行取经的故事。主要人物包括:
- 唐僧:慈悲为怀,意志坚定的取经人。
- 孙悟空:聪明机智,法力无边的齐天大圣。
- 猪八戒:贪吃好色,力大无穷的天蓬元帅。
- 沙僧:忠厚老实,任劳任怨的卷帘大将。
这些文本会被分词器(Tokenizer)处理成 Token ID,然后输入模型进行训练。
2. 模型存储阶段(权重训练)
知识点的存储方式
- 训练时,模型并不会“硬编码”出类似数据库的表,而是通过参数优化来调整神经网络的权重矩阵,以便在未来推理时能更好地预测输出。
- 在大量文本的训练过程中,模型的 Transformer 层会学到:
- 角色与《西游记》的关联(例如“孙悟空”与“猴子”、“齐天大圣”相关)
- 人物的特性(例如“猪八戒”与“贪吃”、“懒惰”相关)
- 情节逻辑(例如“孙悟空保护唐僧”)
存储示意
- 假设模型是一个大网络,含有数千层的权重矩阵,类似:
权重矩阵: 孙悟空 -> 0.9 齐天大圣 孙悟空 -> 0.85 火眼金睛 猪八戒 -> 0.95 嫦娥 唐僧 -> 0.92 西天
-
这些不是数据库中的明确存储,而是隐含在 数十亿个参数 的权重中,每当用户提问时,模型会动态地从这些权重中恢复信息。
3. 推理阶段(模型使用时)
当你问:
《西游记》的主要人物有哪些?
模型不会直接查数据库,而是:
- 先用 分词器 把这句话转成 Token ID。
- Transformer 层会利用已有的训练权重进行计算,找出最可能的回答:
["唐僧", "孙悟空", "猪八戒", "沙僧"]
- 经过解码(Decoding)后,转换回自然语言:
《西游记》的主要人物包括唐僧、孙悟空、猪八戒和沙僧。
这说明,知识点不是简单存成表格,而是分布在权重里,靠推理计算出来的。
4. 与数据库存储的对比
特点 | 大模型存储方式(神经网络) | 数据库存储方式(SQL/NoSQL) |
---|---|---|
存储方式 | 权重矩阵,隐含存储 | 结构化数据,明确存储 |
访问方式 | 计算+推理 | 查询(SQL/Key-Value) |
更新方式 | 需要微调(Fine-tune) | 直接插入或更新 |
误差 | 可能有细微偏差 | 结果精确可控 |
5. 补充:如何增强模型的知识?
如果模型的答案不够准确,比如它对一些细节记忆不清,可以:
- 微调(Fine-tuning)
- 额外提供《西游记》的训练文本,让模型在特定领域表现更好。
- RAG(检索增强生成,Retrieval-Augmented Generation)
- 在推理时,先用数据库(如 FAISS/Milvus)查询《西游记》的相关内容,再让模型回答,类似书+大脑的组合。
大模型对《西游记》的知识不是直接存储,而是通过权重矩阵的方式,结合 Transformer 结构隐含编码。当你提问时,它会用训练中的模式匹配和推理能力来找出答案。这与数据库查找不同,更像是一种“类人的记忆”方式!
三、这样的知识存储方式更节省空间吗
大模型的存储方式相比传统数据库,在某些方面更省空间,但在另一些方面更耗空间,主要取决于存储的粒度和查询的需求。
1. 对比:大模型 vs. 传统数据库
存储方式 | 大模型(神经网络权重) | 数据库(SQL/NoSQL) |
---|---|---|
存储单位 | 权重矩阵(浮点数参数) | 结构化表、文档、Key-Value |
信息存储方式 | 分布式存储在整个模型参数中 | 显式存储(行/列/键值对) |
存储空间 | 更大(数 GB~TB 级) | 更小(只存文本/数值) |
查询速度 | 更快(推理一步生成) | 更快(索引+检索) |
存储精确性 | 不精准(受训练数据影响) | 精准(数据即答案) |
可更新性 | 需要重新训练或微调 | 直接插入或更新 |
2. 哪种方式更省空间?
(1) 大模型更耗空间
-
大模型需要存储大量参数,即使是小型模型(如 7B 参数)也可能占据几十 GB:
- 7B 参数(GPT-3.5 级别):
7 * 10⁹
个 16-bit 浮点数(FP16)- 约 14 GB
- 65B 参数(LLaMA2-65B):
65 * 10⁹
个 FP16- 约 130 GB
- 7B 参数(GPT-3.5 级别):
-
这些权重并不是直接存储知识的文本,而是分布式存储的计算参数,包含推理所需的所有信息。
-
传统数据库存储的文本更紧凑
- 例如:
ID | 角色 | 介绍 -------------------------------- 1 | 唐僧 | 取经人 2 | 孙悟空 | 齐天大圣 3 | 猪八戒 | 天蓬元帅 4 | 沙僧 | 卷帘大将
- 这种结构化数据,几 KB 即可存储完整的《西游记》人物信息,远比大模型存储的权重矩阵节省空间。
- 例如:
(2) 但大模型更省空间(在某些场景)
- 如果要存储庞大的知识库(比如全网知识),数据库需要海量表、索引、全文搜索,甚至需要TB 级别的存储。
- 大模型可以用数百 GB 权重来概括整个互联网的知识,并且推理时不用查表,存取更快。
3. 结论:谁更适合存储知识?
- 如果是小规模、精确知识(如《西游记》人物表)→ 数据库更省空间。
- 如果是大规模、多领域知识(如通识问答)→ 大模型更省空间(因为数据库需要 TB 级别存储,而模型可能只要几百 GB)。
- 如果知识需要频繁更新 → 数据库更合适(模型更新需要重新训练)。
💡 最优方案
现在很多应用使用混合存储:
- 基础知识靠数据库(SQL/NoSQL 存精准数据)。
- 复杂推理靠大模型(从权重中“想”出答案)。
- 结合 RAG(检索增强生成),用数据库查找数据,再让大模型生成自然语言回答,存储高效,回答精准。