Linux 服务器本地部署 DeepSeek-R1 大模型!在远端Web-UI访问!保姆级教程!

出于对代码、文档等的保密要求,所以很多公司会将 DeepSeek 部署在本地服务器使用,如下是一个如何部署的保姆级的教程!我所使用的硬件环境如下所示。
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 104
On-line CPU(s) list: 0-103
Thread(s) per core: 2
Core(s) per socket: 26
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 85
Model name: Intel(R) Xeon(R) Gold 6230R CPU @ 2.10GHz
Stepping: 7
CPU MHz: 1000.761
CPU max MHz: 4000.0000
CPU min MHz: 1000.0000
BogoMIPS: 4200.00
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 1024K
L3 cache: 36608K
NUMA node0 CPU(s): 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100,102
NUMA node1 CPU(s): 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63,65,67,69,71,73,75,77,79,81,83,85,87,89,91,93,95,97,99,101,103
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts pku ospke avx512_vnni md_clear flush_l1d arch_capabilities

1. 在 Linux 服务器上部署 DeepSeek 模型

1.1 安装 Ollama

通过 “ Ollama” 进入其官网,点击 “Download” 进入下载界面,选择 Linux 操作系统,复制相关指令安装 Ollama,具体指令如下所示:
curl -fsSL https://ollama.com/install.sh | sh
如果服务器上没有显卡,那么安装结束后会出现如下的警告,无视即可。

1.2 验证安装:

安装完成后,您可以通过以下命令验证 Ollama 是否安装成功:
ollama --version

2. 下载模型

使用如下命令下载模型:
ollama run deepseek-r1:671b // 将下载并启动DeepSeek R1 671B模型

2.1 指定模式的安装目录

我们在安装模型时,可能由于服务器空间有限,需要安装到指定的目录。

2.1.1 确定默认存储路径

Ollama 默认的模型存储路径如下:/usr/share/ollama/.ollama/models (Linux)

2.1.2 设置新的下载路径

通过环境变量 OLLAMA_MODELS 指定自定义目录:
  • 关闭Ollama进程:sudo systemctl stop ollama
  • 打开终端,编辑Shell配置文件(如.bashrc、.zshrc):
    • nano ~/.bashrc # 或使用其他编辑器
  • 在文件末尾添加:
    • export OLLAMA_MODELS="/data/ollama"
  • 保存文件后,执行 source ~/.bashrc 使配置生效。
  • 重启Ollama服务:sudo systemctl enable ollama

Note:

自定完如上目录后,启动ollama会失败,具体的原因为:ollama 用户和用户组对于/data/ollama目录没有访问权限,使用如下指令使能其权限。

# sudo chown -R ollama:ollama /data/ollama

3. 配置远端 Web-UI 服务

为了允许远程访问,您需要配置 Ollama 服务监听所有网络接口,并设置允许的来源。
编辑服务配置文件:sudo vim /etc/systemd/system/ollama.service,在文件中添加以下内容:
[Unit]
Description=Ollama Service
After=network-online.target
[Service]
ExecStart=/usr/bin/ollama serve
User=ollama
Group=ollama
Restart=always
RestartSec=3
Environment="OLLAMA_MODELS=/data/ollama" # 模型存储路径
Environment="OLLAMA_HOST=0.0.0.0:11434" # 允许远程调用 API
Environment="OLLAMA_ORIGINS=*"
[Install]
WantedBy=default.target
上述配置将 Ollama 服务设置为在所有网络接口上监听 11434 端口,并允许所有来源的请求。

Note:

自定完如上目录后,启动ollama会失败,具体的原因为:ollama 用户和用户组对于/data/ollama目录没有访问权限,使用如下指令使能其权限。

# sudo chown -R ollama:ollama /data/ollama

重新加载服务并启动:
sudo systemctl daemon-reload
sudo systemctl enable ollama
sudo systemctl start ollama
sudo systemctl status ollama

3.1 配置防火墙

如果您的系统启用了防火墙,需要允许11434端口的访问:
允许端口访问:sudo ufw allow 11434

3.2 访问模型服务

完成上述配置后,您可以通过浏览器访问 http://<服务器IP>:11434 来验证服务是否正常运行。如果看到“Ollama is running”的提示,说明服务已成功启动。

3.3 使用Chatbox进行远程访问

为了方便与模型进行交互,您可以使用Chatbox客户端:
  • 配置API连接:
    • 在Chatbox中,选择“Ollama API”,并输入您的服务器IP和端口(例如http://<服务器IP>:11434)。
  • 选择模型:
    • 在模型列表中选择您下载的DeepSeek模型(如deepseek-r1:671b)。
  • 开始对话:
    • 配置完成后,您可以在Chatbox中输入问题,与模型进行交互。
### 部署 DeepSeek 的准备工作 #### 环境准备 为了成功部署 DeepSeek 大型语言模型,需满足一定的硬件和软件条件。 #### 硬件需求 最低配置应具备 CPU 支持 AVX2 指令集、至少 16 GB RAM 和不少于 30 GB 存储空间。对于更佳性能体验,则建议采用 NVIDIA GPU (例如 RTX 3090 或更新型号),搭配 32 GB 内存以及 50 GB 及以上磁盘容量[^2]。 #### 软件依赖 操作系统方面可以选择 Windows, macOS 或 Linux;而 Docker 则是在使用 Open Web UI 方式时所必需的组件之一。 --- ### 安装 Ollama 并设置 DeepSeek 运行环境 完成上述基础建设之后,下一步就是通过安装 Ollama 来构建适合 DeepSeek 工作的空间: ```bash pip install ollama ``` 此命令会自动处理所有必要的 Python 库和其他资源文件,使得后续操作更加简便顺畅。 --- ### 获取并加载预训练模型 由于 DeepSeek 是开源项目,因此可以直接访问其官方仓库来获取最新的模型版本及相关文档资料。通常情况下,这些信息会被打包成压缩包形式提供给开发者下载使用。解压后按照指引将权重参数导入到指定路径下即可让程序识别该模型实例[^1]。 --- ### 启动服务端口监听 最后一步是要确保应用程序能够正常启动,并对外开放 API 接口供外部调用者发起请求。这一般涉及到修改配置文件中的网络参数部分,比如设定 IP 地址与端口号等细节内容。当一切就绪后执行如下脚本可使服务器进入待命状态等待连接到来: ```python from deepseek import app if __name__ == "__main__": app.run(host='0.0.0.0', port=8080) ``` 至此整个本地化搭建过程宣告结束,现在可以尝试发送测试样例验证新系统的可用性和稳定性了。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值