官网解释:
bitsandbytes集成支持8位和4位精度数据类型,这对于加载大型模型非常有用,因为它节省了内存(请参阅bitsandbytes集成指南以了解更多信息)。将load_in_8bit或load_in_4bit参数添加到from_pretrained()并设置device_map="auto"以有效地将模型分发到您的机器。
网络解释
load_in_8bit:一个布尔值,如果为 True,则把加载的模型转换为 mixed-8bit quantized model
chatgpt解释
加载为mixed-8bit quantized模型意味着将神经网络模型量化为8位精度,并且在某些层面或部分采用混合精度量化。在深度学习中,通常使用32位浮点数来表示网络参数和激活值,但是将模型量化为8位意味着将参数和激活值表示为8位整数。
量化模型可以带来许多好处,包括减少模型的内存占用和加快推理速度,这对于在资源受限的设备上部署模型非常有用。混合精度量化允许在不牺牲模型准确性的情况下获得这些优势,因为某些层面或部分仍然可以保持更高的精度。