学倾向得分逆概率加权,发二区文章

郑老师统计课程,欢迎点击报名Nhanes公共数据库挖掘 课程

倾向得分是指给定一组协变量后,个体接受某种处理(例如干预或实验)的概率。它主要用于平衡处理组和对照组之间的协变量分布,以减少自选择偏误,从而更准确地估计处理效应。本期我们通过一篇二区文章来看看倾向得分的加权法如何进行分析。

2022年12月,一篇题为:Association between Healthy Eating Index-2015 and Age-Related Cataract in American Adults: A Cross-Sectional Study of NHANES 2005–2008的研究论文发表于《Nutrients》,本文为中国学者写作,文章属于中科院分区医学一区,2023年IF=5.9

这项研究通过倾向得分加权与Cox比例风险回归模型,研究了健康饮食指数-2015与年龄相关白内障的关联。结果表明,坚持健康饮食模式HEI-2015降低会年龄相关白内障的风险。

bc8be33f624deb6ed6fa00c287abfa81.png

摘要与主要结果

一、摘要

背景:健康饮食指数-2015(HEI-2015)是由美国人饮食指南提出的健康饮食模式,被证明可以预防各种疾病。然而,它是否与年龄相关的白内障有关尚不清楚。

方法:这项基于人群的横断面研究包括2005年至2008年周期内来自国家健康和营养检查调查(NHANES)的6395名参与者。HEI-2015是根据24小时饮食回忆访谈计算得出的,范围从0到100,HEI-2015越高代表更好的饮食质量。年龄相关性白内障是根据问卷生成的。使用逻辑回归模型评估HEI-2015与白内障之间的关联。采用倾向评分加权、限制性立方样条图和亚组分析进一步探究两者之间的关系。

结果:6395名受试者被纳入研究,平均年龄为48.7(15.3)岁,3115名(48.7%)为男性。在调整所有包括的协变量后,HEI-2015与白内障呈负相关,连续变量[优势比(OR):0.991,95%置信区间(CI):0.984-0.997,p = 0.006],与分类变量四分位数最高的四分位数与最低的四分位数(OR:0.739,95%CI:0.559-0.980,p = 0.035)结论相似。在倾向评分加权后,相关性仍然显著。限制性立方样条图没有非线性关系(非线性p为0.085)。亚组分析显示无交互作用效应。

结论:坚持健康饮食模式HEI-2015与年龄相关白内障的风险较低有关。

二、研究结果

1. 研究人群的基线资料

研究人群共有 6395 名参与者,平均年龄 48.7 岁,其中男性 3115 名(48.7%),女性 3280 名(51.3%),表1总结了这些特征。与我们的假设相反,从表 1 可以发现,患有白内障的参与者往往具有更高的 HEI-2015 分数。需要进行多变量分析。

a27034201f5914c060606e1d3c6100c0.png

3648ac3c0225be459bf79fc4999dc5d2.png

2.建立logistics回归模型

HEI-2015 与白内障风险之间关联的逻辑回归模型结果如表 2 所示。与单变量回归相比,多元回归模型更加可靠。也就是说,在本研究中,HEI-2015 与白内障风险呈负相关。但还需进一步分析,理清矛盾。

3927e0ec30697eb5b3344326a308bb86.png

3.建立倾向评分加权回归模型

如表 1 所示,患有和不患有白内障的参与者之间的人口特征在所有协变量中均存在显着差异。为了进一步控制混杂效应,采用逆概率加权法进行倾向得分加权(PSW),然后进行PSW加权多元逻辑回归分析。PSW有效地减少了不同HEI-2015四分位数之间协变量的变异。

PSW加权回归模型的结果如表3所示。PSW 加权回归的结果显示,在所有三个模型中,HEI-2015 与白内障显着负相关,推断未加权回归的矛盾结果是由于混杂效应造成的。

713b87d909463e630a97d5b8190a2c59.png

4.研究HEI-2015 内部各个得分与白内障关联

将HEI-2015的各个成分评分视为单变量,建立逻辑回归模型来研究HEI-2015成分与白内障的关联。结果总结于表 4 中。

b301b5a995391da59fcc7e9198d51b2b.png

5.绘制限制性立方样条图

为了进一步测试 HEI-2015 与白内障之间是否存在非线性关联,绘制限制性立方样条图。非线性检验的 p 值为 0.085,这意味着 HEI-2015 与白内障之间不存在显着的非线性关系。如图2所示,曲线整体呈下降趋势,表明HEI-2015与白内障之间存在负相关关系。

3909e9c45c8b1708fac0130601a4e6ec.png

6.亚组分析

使用完全校正的逻辑回归模型对所有协变量进行亚组分析。结果总结在图 3 中。对于大多数参与者组来说,HEI-2015 仍然与白内障呈负相关。对于患有高血压、高脂血症和糖尿病的参与者,结果仍是负相关。

a1eba8caf45cec9d7a6db15cf45a316d.png

设计与统计学方法

一、研究设计

P2005年至2008年周期内来自国家健康和营养检查调查(NHANES)的6395名参与者。

I:HEI-2015评分,根据24小时饮食回忆访谈计算得出的,范围从0到100,HEI-2015越高代表更好的饮食质量。

O:年龄相关性白内障,根据问卷生成的。

S:横断面研究。

二、统计方法

1.描述基线以及差异性分析,连续变量使用平均值±标准差(SD)来描述,分类变量以数字和百分比表示。HEI-2015 进行了基于四分位数的连续变量和分类变量分析。使用 Student t 检验或 Rao-Scott Pearson χ 2 检验比较变量。

98e3844856fb7206c5775b48e4c492d1.png

7ad489a1359da61081323c32fbe0f267.png

2.建立逻辑回归模型并检验共线性,为了研究 HEI-2015 与白内障之间的关联,建立了三个逻辑回归模型。计算方差膨胀因子(VIF)来检验 Logistic 模型中所有变量可能存在的多重共线性,我们发现所有 VIF 均小于 2,这意味着研究的变量之间不存在多重共线性。

10a1b90999a137db3d4780b4c9fc1f25.png

3.建立倾向得分加权回归模型,鉴于不同受试者的一些人口特征存在显着差异,使用逆概率加权法(一种常见的PSW方法)计算倾向得分加权(PSW),并建立PSW加权多元逻辑回归模型进一步控制混杂因素。

8a367088a4f04f349724a3a0b572bcb8.png

4.绘制限制性立方样条图,进行亚组分析,HEI-2015是一个连续变量,根据连续变量的倾向得分计算遵循中提出的方法。绘制有3个节点的限制性立方样条图来探索潜在的非线性关联。节点的选择是基于最小化 Akaike 信息准则 (AIC) 统计量。限制性立方样条图针对所有协变量进行了调整。进行基于所有协变量的亚组分析,以调查亚组之间的差异并探索潜在的相互作用效应。

cd38e06b47c0ce03b877255892bda735.png

5.补充说明,使用 R(版本 4.1.1)进行统计分析和可视化。所有统计检验均为双尾,p 值为 0.05 或更小为有统计学差异。

cc5e4a69d287c9b13246ff7e8f566f41.png

小感悟

本期介绍的是二区文章,5.9分。

这项研究为横断面研究,研究方法如下,

  • 一开始,先描述样本并进行差异性分析,

  • 再建立多样的回归模型,此处建立逻辑回归研究年龄相关白内障结局。建立未校正,部分校正以及完全校正三阶段模型。

  • 建立倾向得分加权回归,进一步控制由于基线资料差异引起的混杂,但文章中也没介绍倾向得分加权回归用了哪些变量。

  • 绘制限制性立方样条图找拐点,进行亚组分析加强结论稳健性。

这篇文章研究方法多样,结构严谨,层层递进,说服力非常强。是同级别文章中的佼佼者。这篇文章为我国学者写作,结果说明部分因果关联和逻辑转接非常丝滑,符合中文阅读习惯,是一篇好文。研究方法有许多值得学习的优点,欢迎大家讨论。

一个专门做公共数据库的公众号,关注我们

0b091896443331cf0089ffc2944bf135.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值