西南医大拿下一区Top(IF9.6),双向孟德尔随机化联合Meta分析的思路绝了好吧!

  引言

今天这篇文章,学者给我们带来了高分的研究思路!

首先,研究采用Meta分析对大规模的数据进行挖掘,然后通过双向孟德尔随机化探究因果关联,为整个研究增添了更强的可信度。

心血管疾病(CVD)与抑郁症是全球公共卫生领域的两大挑战,其共病现象显著加剧患者死亡风险并降低生活质量。然而,传统研究难以区分二者是因果关系还是环境因素驱动的关联。

2025年4月17日,西南医科大学学者用Meta分析+孟德尔随机化,在期刊Molecular Psychiatry(医学一区Top,IF=9.6)发表题为:“Cardiovascular diseases and depression: A meta-analysis and Mendelian randomization analysis”的研究论文。

本研究旨在通过Meta分析量化CVD患者中抑郁症的患病率及其对死亡率的影响,并采用双向孟德尔随机化(MR)分析,从遗传学角度验证CVD与抑郁症的因果关系,为临床干预提供理论依据。

本公号回复“ 原文”即可获得文献PDF等资料。

本研究分为两个阶段进行:

  • Meta分析:系统评估39项研究中63,444名CVD患者的抑郁症患病率,按疾病亚型(冠心病、心力衰竭等)分层,并分析抑郁症与全因死亡率的关系。

  • 双向孟德尔随机化:利用大规模GWAS数据,以遗传变异为工具变量,分别检验CVD对抑郁症的因果效应(正向分析)及抑郁症对CVD的因果效应(反向分析),并通过多种方法验证结果的稳健性。

figure 2

图1 MR设计流程

Meta分析结果显示,CVD患者抑郁症总体患病率为20.8%,亚组分析显示冠心病和心力衰竭患者的患病率分别为19.8%和24.7%。

而23.2%的CVD患者存在焦虑。

图2 CVD患者的抑郁风险

同时,研究团队还发现,患有抑郁症的CVD患者的全因死亡风险显著增加。具体而言,与非抑郁患者相比,其死亡风险增加了1.1倍。

不过,有趣的是,无论是正向还是反向MR,结果均显示CVD和抑郁风险之间的显著关联。但其亚型(冠心病、心肌梗死、心力衰竭和高血压)却与抑郁风险存在显著关联。

图3 MR结果图

(A)森林图显示CVD与抑郁、焦虑之间的因果关联;(B)正向MR;(C)反向MR

综上所述,研究强调了心血管疾病(CVD)和抑郁风险之间的重要关系,强调了精神和心血管保健的迫切需要。此外,抑郁可能是特定CVD亚型(如心力衰竭、高血压)的独立风险因素,而不仅仅是结果。

END

如果您觉得发文难度大,可以考虑郑老师团队的统计服务,从课题设计、样本量计算到统计分析、论文撰写,一站式服务支持!

感兴趣可扫描下方二维码进行咨询~

郑老师统计团队及公众号

全国较大的线上医学统计服务平台,专注于医学生、医护工作者学术研究统计支持,我们是你们统计助理!

我们提供以下科研与统计服务:

研究者发起的临床试验项目

临床预测模型与机器学习方法

医学数据库NHANES、GBD、孟德尔随机化、MIMIC等挖掘发表级数据

GBD、NHANES、CHARLS医学数据库挖掘1对1R语言指导

联系陈老师咨询(微信号sas555777

图片

欢迎关注,持续分享优秀文章!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值