浙大学者用CHARLS数据库联合两个老年数据库发表一区top期刊 IF=39.3

欢迎报名2024年郑老师团队课程课程!

  郑老师科研统计培训,包括临床数据、公共数据分析课程,欢迎报名

2024年1月,浙江大学医学院邵逸夫医院学者在《European Heart Journal》(一区top,IF=39.3发表题为:"Changes in frailty and incident cardiovascular disease in three prospective cohorts" 的研究论文。

本文章基于中国健康与退休纵向研究(CHARLS)、英国老龄化纵向研究(ELSA)和健康与退休研究(HRS)三个前瞻性数据库,通过Cox回归分析模型对基线时的虚弱状态和随访时受试者虚弱状态的变化数据进行分析,探寻虚弱状态变化与心血管疾病(CVD)  的关联。结果表明,不同的虚弱状态变化与不同的心血管疾病风险相关,从健壮向虚弱状态转变将会增加CVD的风险,而从虚弱状态中恢复则会降低CVD的风险。

7a7d6a13a8b3aa48245eaaac1965c5fd.png

摘要与主要结果

一、摘要

标题:三个前瞻性队列中虚弱和心血管疾病发生率的变化

研究目的:先前的研究发现,虚弱是心血管疾病(CVD)的重要危险因素。然而,以前的研究只关注基线虚弱状态,没有考虑随访期间虚弱状态的变化。本研究的目的是调查虚弱状态变化与事件 CVD 的关联。

方法: 本研究使用了三个前瞻性队列的数据:中国健康与退休纵向研究(CHARLS)、英国老龄化纵向研究(ELSA)和健康与退休研究(HRS)。虚弱状态通过 Rockwood 虚弱指数进行评估,并分为健壮、虚弱前或虚弱。通过基线时的虚弱状态和基线后两年的第二次调查来评估虚弱状态的变化。心血管疾病是通过自我报告的医生诊断的心脏病(包括心绞痛、心脏病发作、充血性心力衰竭和其他心脏问题)或中风来确定的

### 数据清洗概述 数据清洗是数据分析过程中至关重要的步,旨在提高数据质量并确保后续分析的有效性和准确性。对于CHARLS数据库中的老年人群数据,可以采用多种方法来清理和准备这些数据。 #### 导入必要的库 为了有效地处理CHARLS数据库中的数据,首先需要导入些常用的Python库: ```python import pandas as pd import numpy as np from sklearn.impute import SimpleImputer ``` #### 加载数据集 假设已经下载了CHARLS数据库的相关文件,并将其保存为CSV格式,则可以通过如下方式加载数据[^1]: ```python data = pd.read_csv('path_to_charls_data.csv') ``` #### 处理缺失值 在实际应用中,CHARLS数据库可能存在大量缺失值的情况。针对这种情况,可以选择删除含有过多缺失值的记录或列,也可以通过插补法填补缺失值。这里展示种简单的均值填充策略: ```python imputer = SimpleImputer(strategy='mean') # 使用平均数填充数值型特征 cleaned_numeric_data = imputer.fit_transform(data.select_dtypes(include=[np.number])) # 对于分类变量,可以用众数填充 mode_imputer = SimpleImputer(strategy="most_frequent") cleaned_categorical_data = mode_imputer.fit_transform(data.select_dtypes(exclude=[np.number])) ``` #### 去除重复项 有时,在同个调查对象的不同访问时间点可能会存在完全相同的记录。因此,去除冗余条目也是必不可少的操作之: ```python unique_data = data.drop_duplicates() ``` #### 统日期格式 如果涉及到出生年份或其他时间戳字段,应该统其表示形式以便更好地计算年龄等指标: ```python data['birth_year'] = pd.to_datetime(data['birth_date']).dt.year current_year = datetime.now().year data['age'] = current_year - data['birth_year'] ``` #### 过滤特定年龄段人群 最后,可以根据研究需求筛选出符合条件的老年群体样本集合: ```python elderly_population = data[data['age'] >= 60] ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值