发文新思路,你可知道?双向双样本孟德尔随机化结合Nhanes发文JAD(IF=6.6)

5128a52f48cad30247422a1dab0e030b.png

相信诸位也有发现,很多孟德尔随机化文章的思路均是先前多项研究表明存在联系,但两者间的因果关系尚不明确。所以做孟德尔随机化研究来探讨因果关系,这就给我们的研究思路起了个头!

孟德尔随机化在发文领域的爆火也不是一天两天了,现在简单的方法已经说服不了审稿人,没有创新点,那么“十投九拒”就会成为家常便饭。可是孟德尔随机化还能和什么创新点结合呢?

让我们来看看今天这篇文章,采用双向双样本孟德尔随机化结合NHANES数据库,探讨抑郁症与便秘之间的因果关系,发文二区!

2024年5月26日,中国学者用NHANES数据库做了一项孟德尔随机化研究,在期刊《Journal of Affective Disorders》(医学二区top,IF=6.6)发表,题为:“Identifying the association between depression and constipation: An observational study and Mendelian randomization analysis”,抑郁症和便秘都是严重影响生活质量的常见疾病,本研究旨在探讨抑郁与便秘之间的因果关系

c875c8a8d03136c89ab98b62f54987bc.png

本公众号回复“ 原文”即可获得文献PDF等资料

虽然多项研究表明便秘与抑郁症之间存在联系,但两者间的因果关系尚不明确。因此,为探究抑郁症与便秘之间是否存在因果关系,中国学者先进行了观察性研究,再开展了一项双向双样本孟德尔随机化研究

主要研究结果

1.研究设计

本研究采用了国家健康和营养检查调查(NHANES)数据库2005-2010年的数据以及GWAS数据库的数据。

  • 最终纳入了11,585名大于20岁的参与者,其中937人患有便秘,905人患有抑郁症。

6299debaeb6f188d91f1c2eeab189ee6.png

  • 同时,纳入了68个与抑郁相关的SNP16个与便秘相关的SNP32个与重度抑郁症相关的SNP进行孟德尔随机化(MR)研究,额外的13SNP用于进一步研究抑郁对便秘的因果关系。

f27d6d1a74ff6757e26a0b9cd52f600e.png

2.基线数据

研究者发现,便秘与抑郁症之间存在联系

  • 便秘组中有11.31%的参与者患有抑郁症,明显高于正常肠道组(6.09%);

  • 不同抑郁程度的参与者也得到了类似的结果。便秘组出现轻度抑郁(19.06% vs 14.10%)、中度抑郁(7.07% vs 3.97%)或重度抑郁(4.24% vs 2.12%)的参与者多于正常肠道组。

4d941764226bca8b9c1b70ce600b5b7d.png

3.观察性研究结果

多因素logistic回归分析显示抑郁与便秘呈正相关(未经调整模型:OR =1.968, 95%CI   1.530-2.532;全调整模型:OR = 1.499, 95%CI= 1.117-2.010),同时这些结果还表明便秘与抑郁严重程度也呈正相关。

  • 在未调整的模型中,重度抑郁症患者便秘的风险(OR = 2.294, 95%CI = 1.538-3.422)高于轻度抑郁症患者(OR = 1.549, 95%CI = 1.242-1.932)。

  • 在完全调整模型中也观察到相同的趋势(重度抑郁症:OR = 1.633, 95%CI   1.077 ~ 2.476;轻度抑郁:OR = 1.380, 95% CI   1.102-1.729)。

7c6c664c9489885751e26cd8fc1caf28.png

缩写:OR,比值比;CI,置信区间;RIP,家庭收入与贫困的比率;BMI,身体质量指数。

未调整模型:没有进行调整。

调整模型I:调整年龄,性别,种族/民族。

调整模型II:调整年龄、性别、种族/民族、教育程度、婚姻状况、RIP、BMI、饮酒、吸烟、剧烈运动、高血压、糖尿病、共病。

调整模型III:调整模型II中调整的协变量,能量、蛋白质、碳水化合物、膳食纤维、脂肪、水分。

4.MR分析结果:抑郁对便秘存在显著因果关系

(1)MR分析结果如下

  • IVW显示抑郁对便秘有显著的因果影响(OR = 1.285, 95%CI 1.173-1.407, P<0.001

  • 在加权中位数模型中也发现了类似的估计(OR = 1.248, 95%CI 1.107-1.408, P=0.0003)。

7b6868af2182ba5cc8cb7843a6ae7546.png

  • 散点图和森林图如下图所示。

793a7b47f9abaf87718c6ad6daae2ffa.png

58ebc2610924721725a2d5deeea8df4f.jpeg

1d66ecb5e6560a6840c551c9d814d32b.jpeg

(2)结果评估

  • MR-Egger回归截距为0.005 (P = 0.430),说明未观察到多效性

  • Cochran Q检验显示不存在异质性(P = 0.119)。

  • 漏斗图呈现对称性,也表明不存在异质性

b14f1a9829fff9178f87135db91c468e.png

  • 此外,留一法分析发现,没有单个IV显著影响抑郁对便秘的因果关系。

  • 而事后功率为100%,有力地支持了这种因果关系。

422d7e9dc3d5ae0b87d574ba53b2f1c9.png

5.MR分析结果:重度抑郁症对便秘存在因果关系

由于重度抑郁症与便秘之间的关系存在争议,研究团队进一步对两者间的的关系进行MR分析。

(1)MR分析结果

在IVW模型中,MR分析显示重度抑郁(MDD)对便秘存在因果关系(OR = 1.191, 95%CI: 1.074-1.320, P = 0.0009)。

e650428133ae3391512f89c4c891fad7.png

(2)结果评估

  • MR-Egger回归截距为- 0.002 (P = 0.716)。

  • Cochran Q检验(P = 0.220)和漏斗图证实不存在异质性

39a3c5818689f8c7d6c552d6e72c9c91.png

  • 同样使用留一法进行评估,事后功率为100%,有力地支持了这种因果关系。

26cf51402f646e0469aa8d7758063b6d.png

6.反向MR结果:便秘对抑郁无显著

研究团队进行了的反向MR分析来探索反向因果关系,分析步骤与上述MR分析相同。

(1)反向MR分析结果

  • 结果发现,便秘对抑郁无显著的因果关系(IVW: OR = 1.003, 95%CI: 0.941 ~ 1.068, P =0.937)。

3dcbca9cee858b543fdabb01668f25da.png

(2)结果评估

  • MR-Egger回归截距为- 0.004 (P = 0.414),表明未观察到多效性

  • Cochran Q检验显示无异质性(P = 0.239)。

  • 漏斗图呈对称性,不存在异质性。

3602cb89e07d53a7e591ecfd33b586f7.png

  • 去除单个IV后未观察到明显变化,这一点通过留一法得到了证实。

538d04c882601923f498c83b0ced9cee.jpeg

统计学方法

本文又是一个观察性研究加上孟德尔随机化的研究,主要采用IVW法来估计抑郁和便秘之间的因果关系。

观察性研究:

  • 采用Logistic回归分析探讨便秘与抑郁的相关性。

孟德尔随机化(MR)研究:

  • IVW方法作为本研究的主要分析方法,用于基本因果估计;

  • 加权中位数方法可减少偏倚;

  • MR-Egger回归截距用于估计定向多效性;

  • 采用Cochran Q检验并绘制漏斗图来评估异质性;

  • 采用留一法评估结果的稳健性和一致性;

  • 事后功率用webtool 计算。

反向孟德尔随机化(MR)研究:

使用反向MR分析以评估便秘与抑郁症之间的因果关系。

本公众号回复“ 原文”即可获得文献PDF等资料

后   记

本文的统计学方法很常见,又是观察性研究加上双向双样本孟德尔随机化。相较于其他统计学方法,孟德尔随机化在概念上相对直观简单,但实际操作却相对繁琐,有很多细节需要注意。

如果你想用孟德尔随机化发文章,但没有思路不知道从哪里开始,或者对孟德尔随机化的操作没有把握,不妨来看看郑老师的孟德尔随机化课程,手把手带你发文!没有数据,没有实验条件,照样把SCI发表!

7550294f1cad79a1c0e1a5000713d1b1.png

本公众提供各种科研服务了!

一、课程培训

2022年以来,我们召集了一批富有经验的高校专业队伍,着手举行短期统计课程培训班,包括R语言、meta分析、临床预测模型、真实世界临床研究、问卷与量表分析、医学统计与SPSS、临床试验数据分析、重复测量资料分析、nhanes、孟德尔随机化等10余门课。如果您有需求,不妨点击查看:

发文后退款:2024-2025年科研统计课程介绍

二、数据分析服务

浙江中医药大学郑老师团队接单各项医学研究数据分析的服务,提供高质量统计分析报告。有兴趣了解一下详情:

课题、论文、毕业数据分析 

临床试验设计与分析 公共数据库挖掘与统计

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值