NHANES Online平台更新2.0.2版!大家期待的中介分析来啦!

2025年度首次更新!由浙中医大郑卫军老师团队开发的NHANES Online平台更至2.0.2版本啦!

本次除了上新一批综合指标外,最大的变化是:中介分析正式上线啦!

中介功能可以算是大家呼声最高的需求了,目前NHANES公共数据库发文章,普通的关联性分析太过平凡,即便是RCS、趋势性分析也算不得新奇。

倒是中介分析慢慢开始卷起来,和高大上的综合指标结合起来,简直要玩出花!

因此,技术人员加班加点终于将中介功能部署到平台上,不仅有加权分析还有非加权分析!

下面我们就来简单介绍一下如何零代码快速实现NAHNES数据的中介分析!

加权中介分析模块试用链接:

www.zstats.cn/software2/nhanes_weight/nhanes_weight_2.0.2.0_trial/

非加权中介分析模块试用链接:

www.zstats.cn/software2/nhanes_analysis/nhanes_analysis_2.0.2.0_trial/

首先,根据研究需要,选入我们的结局变量中介变量暴露变量

  • 结局变量支持二分类、定量连续、生存资料。

  • 中介变量支持二分类或者定量连续。

  • 暴露变量支持二分类、定量连续、等级数据。

可以满足多样的分析需要!

13771a205775af7ec0c7b80dd80f0bda.png

为了确保结果可以复现,还需要设置随机种子。根据研究需要,平台还支持指定中介效应估计方法中介模型模拟迭次数协变量设置也是轻轻松松。

bd0817ced708f6c1f16e442c1885a0fb.png

完成全部的设置后,接着勾选"点击分析",界面就就会一键给出分析结果!

683074a8396ae336f964d915d39c7305.png

分析结果包括4个方面,按照我们的示例需要证明:炎症指数→高血压→死亡,高血压的中介效应,我们需要重点关心的结果有:

  • 暴露与中介的回归结果(需要是阳性)

  • 暴露与结局的回归结果

  • 暴露、中介与结局的回归结果(中介与结局结果需要是阳性)

  • 中介分析结果(ACME间接效应需要是阳性)

49a262127506c3c896e0b4d51db7d7a3.png

df5854a7dcd2c5df2d94b8d6b43d0e6d.png

30224de64ee82deaa6df23671bcbd76a.png

fca7ef829e890ec2c29c734ab2872a6d.png

很显然我们本次的示例数据结果中介关系并不成立!

整个分析流程不涉及代码,统计小白也可以无门槛上手。如果您也有中介分析的需要,欢迎大家浏览器打开下方链接进行试用哦!

NHANES数据下载模块试用链接:

www.zstats.cn/software2/nhanes_data/nhanes_data_trial/

加权中介分析模块试用链接:

www.zstats.cn/software2/nhanes_weight/nhanes_weight_2.0.2.0_trial/

非加权中介分析模块试用链接:

www.zstats.cn/software2/nhanes_analysis/nhanes_analysis_2.0.2.0_trial/

关于这个NHANES数据分析平台

俗话说”十年磨一剑“,经过长时间的打磨,郑卫军老师统计团队最终推出这个NHANES数据分析平台。解决了大家在挖掘过程中,NHANES数据库下载难、分析难等常见问题,助力大家更快完成一篇高质量文章!

如有对该平台感兴趣的学友,赶紧联系我们,早买早享受吧!

网站使用费用

本在线平台售价2000元/年
(有购买其它郑老师统计课程的学员享受9折优惠

服务内容

✅买1年送1年,共2年的平台使用权限
✅平台后期会更新100多个NHANES综合性指标数据
✅提供1年期在线数据分析咨询

购买方式

  • 可以添加下方助教微信咨询详情,或搜索微信号:aq566665

  • 可开技术服务费、培训费、咨询费等发票;可出具课程学习通知,方便报销,可以对公转账。

f6ccb224049808274d9afb339502b25d.png

助教二维码,联系咨询(或搜索vx:aq566665

### 如何使用统计软件对NHANES数据进行中介分析 对于想要执行中介分析的研究者来说,选择合适的工具至关重要。如果工作中不仅涉及统计分析还涉及到其他广泛的数据处理场景,则推荐使用Python[^1];然而,在具体实现过程中,R也提供了非常便捷的功能来完成这一任务。 #### 使用 R 进行 NHANES 数据的中介分析 在R环境中,`mediation`包是专门用来做中介效应分析的一个强大工具。以下是基于此包的操作指南: ```r # 安装并加载必要的库 install.packages("mediation") library(mediation) # 假设已经读取了NHANES数据集,并存储在一个名为nhanes_data的对象中 # nhanes_data <- read.csv('path_to_your_file') # 设定因变量Y(例如:死亡风险)、自变量X(如某种重金属暴露水平)以及中介变量M(比如低度全身性炎症标志物) model_Y <- lm(death_risk ~ metal_exposure, data=nhanes_data) # 主路径模型 model_M <- lm(inflammation_marker ~ metal_exposure, data=nhanes_data) # 中介路径模型 # 执行中介效果估计 mediate_result <- mediate(model_M, model_Y, treat="metal_exposure", mediator="inflammation_marker") # 查看结果摘要 summary(mediate_result) ``` 这段代码展示了如何利用线性回归建立主路径和中介路径两个模型,并通过`mediate()`函数计算中介效应及其置信区间。最终的结果可以通过调用`summary()`查看详细的统计信息。 #### 使用 Python 进行 NHANES 数据的中介分析 而在Python环境下,虽然没有像R那样专门为中介分析设计的一站式解决方案,但是借助于statsmodels和其他辅助模块同样能够达成目的: ```python import pandas as pd from statsmodels.formula.api import ols from statsmodels.stats.mediation import Mediation # 加载NHANES数据至DataFrame对象内 # df = pd.read_csv('path_to_your_file') # 构建主路径方程与中介路径方程 formula_main_effect = 'death_risk ~ C(metal_exposure)' formula_mediation = 'inflammation_marker ~ C(metal_exposure)' mod_mediator = ols(formula_mediation, data=df).fit() mod_outcome = ols(formula_main_effect, data=df).fit() # 初始化Mediation类实例化对象 md = Mediation(mod_outcome, mod_mediator, outcome='death_risk', mediator=['inflammation_marker']) # 获取中介分析报告 result = md.fit(method='parametric') print(result.summary()) ``` 上述脚本说明了怎样运用Pandas管理数据源,再配合StatsModels构建相应的统计模型,最后依靠其内置的方法获得完整的中介效应评估报表。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值