1、在原地即不使用任何额外的空间复杂度交换两个数。
1.相加寄存:a=a+b b=a-b a=a-b
2.位运算:b=a^b; a=a^b; b=a^b
2、模型的方差和偏差是什么,怎么减少bias和var。
偏差:描述的是预测值(估计值)的期望与真实值之间的差距。偏差越大,越偏离真实数据.
方差:描述的是预测值的变化范围,离散程度,也就是离其期望值的距离。方差越大,数据的分布越分散。
Baging减少方差,boosting减少偏差。
3、BN,GN,IN,LN的关系。
上边这张图显示了四种标准化的方向,其中C轴表示通道,N轴表示Batch中的样本序号,H、W轴可以认为是图像样本中的宽和高。
Batch Normalization会将一个batch中所有样本的所有feature map按feature map的序号划分为N(N=feature map)组,然后对这N组内的所有像素点进行N次标准化;
Layer Normalization 是对一个样本中的所有数据进行标准化;
Instance Normalization是对一个样本中的每一个通道进行单独的标准