顺丰科技视觉算法工程师面试题

1、在原地即不使用任何额外的空间复杂度交换两个数。

    1.相加寄存:a=a+b b=a-b a=a-b 

    2.位运算:b=a^b; a=a^b; b=a^b

2、模型的方差和偏差是什么,怎么减少bias和var。

    偏差:描述的是预测值(估计值)的期望与真实值之间的差距。偏差越大,越偏离真实数据.

    方差:描述的是预测值的变化范围,离散程度,也就是离其期望值的距离。方差越大,数据的分布越分散。

    Baging减少方差,boosting减少偏差。

3、BN,GN,IN,LN的关系。

    上边这张图显示了四种标准化的方向,其中C轴表示通道,N轴表示Batch中的样本序号,H、W轴可以认为是图像样本中的宽和高。

    Batch Normalization会将一个batch中所有样本的所有feature map按feature map的序号划分为N(N=feature map)组,然后对这N组内的所有像素点进行N次标准化;

    Layer Normalization 是对一个样本中的所有数据进行标准化;

    Instance Normalization是对一个样本中的每一个通道进行单独的标准

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

七月在线

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值