【AI大模型】Transformers大模型库(十二):Evaluate模型评估

 

目录

一、引言 

二、Evaluate模型评估

2.1 概述

2.2 使用方法

2.2.1 步骤1: 导入必要的库

2.2.2 步骤2: 加载模型和分词器

2.2.3 步骤3: 准备数据集

2.2.4 步骤4: 数据预处理 

2.2.5 步骤5: 创建训练和评估数据集 

2.2.6 步骤6: 设置训练参数并创建Trainer

2.2.7 步骤7: 进行模型评估 

三、总结


一、引言 

 这里的Transformers指的是huggingface开发的大模型库,为huggingface上数以万计的预训练大模型提供预测、训练等服务。

🤗 Transformers 提供了数以千计的预训练模型,支持 100 多种语言的文本分类、信息抽取、问答、摘要、翻译、文本生成。它的宗旨是让最先进的 NLP 技术人人易用。
🤗 Transformers 提供了便于快速下载和使用的API,让你可以把预训练模型用在给定文本、在你的数据集上微调然后通过 model hub 与社区共享。同时,每个定义的 Python 模块均完全独立,方便修改和快速研究实验。
🤗 Transformers 支持三个最热门的深度学习库: Jax, PyTorch 以及 TensorFlow — 并与之无缝整合。你可以直接使用一个框架训练你的模型然后用另一个加载和推理。

本文重点介绍Evaluate模型评估

二、Evaluate模型评估

2.1 概述

Transformers库中的evaluate API主要用于评估模型在特定数据集上的性能。虽然Transformers库本身没有直接提供一个名为evaluate的独立API函数,但通常通过Trainer类的evaluate方法来实现模型评估。下面是一个使用Python和Transformers库进行模型评估的基本步骤,假设你已经有了一个预训练模型和相应的数据集处理器。

2.2 使用方法

2.2.1 步骤1: 导入必要的库

from transformers import AutoModelForSequenceClassification, AutoTokenizer, Trainer, TrainingArguments
from datasets import load_dataset

2.2.2 步骤2: 加载模型和分词器

model_name = "bert-base-uncased"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

2.2.3 步骤3: 准备数据集

这里假设你使用的是Hugging Face的datasets库加载数据,例如IMDB数据集。 

dataset = load_dataset("imdb")

2.2.4 步骤4: 数据预处理 

定义一个函数来对数据进行编码,适合模型输入。 

def preprocess_function(examples):
    return tokenizer(examples["text"], truncation=True, padding='max_length')

encoded_dataset = dataset.map(preprocess_function, batched=True)

2.2.5 步骤5: 创建训练和评估数据集 

train_dataset = encoded_dataset['train']
eval_dataset = encoded_dataset['test']

2.2.6 步骤6: 设置训练参数并创建Trainer

training_args = TrainingArguments(
    output_dir='./results',          # 输出目录
    evaluation_strategy="epoch",   # 每个epoch评估一次
    per_device_eval_batch_size=16,  # 评估时的批次大小
)

trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=train_dataset,
    eval_dataset=eval_dataset
)

2.2.7 步骤7: 进行模型评估 

# 使用Trainer的evaluate方法进行评估
eval_result = trainer.evaluate()
print(eval_result)

三、总结

以上代码展示了如何使用Transformers库中的Trainer类来评估模型。评估结果将包含各种指标,如准确率,具体指标还要取决于你的模型。

如果您还有时间,可以看看我的其他文章:

《AI—工程篇》

AI智能体研发之路-工程篇(一):Docker助力AI智能体开发提效

AI智能体研发之路-工程篇(二):Dify智能体开发平台一键部署

AI智能体研发之路-工程篇(三):大模型推理服务框架Ollama一键部署

AI智能体研发之路-工程篇(四):大模型推理服务框架Xinference一键部署

AI智能体研发之路-工程篇(五):大模型推理服务框架LocalAI一键部署

《AI—模型篇》

AI智能体研发之路-模型篇(一):大模型训练框架LLaMA-Factory在国内网络环境下的安装、部署及使用

AI智能体研发之路-模型篇(二):DeepSeek-V2-Chat 训练与推理实战

AI智能体研发之路-模型篇(三):中文大模型开、闭源之争

AI智能体研发之路-模型篇(四):一文入门pytorch开发

AI智能体研发之路-模型篇(五):pytorch vs tensorflow框架DNN网络结构源码级对比

AI智能体研发之路-模型篇(六):【机器学习】基于tensorflow实现你的第一个DNN网络

AI智能体研发之路-模型篇(七):【机器学习】基于YOLOv10实现你的第一个视觉AI大模型

AI智能体研发之路-模型篇(八):【机器学习】Qwen1.5-14B-Chat大模型训练与推理实战

AI智能体研发之路-模型篇(九):【机器学习】GLM4-9B-Chat大模型/GLM-4V-9B多模态大模型概述、原理及推理实战

《AI—Transformers应用》

【AI大模型】Transformers大模型库(一):Tokenizer

【AI大模型】Transformers大模型库(二):AutoModelForCausalLM

【AI大模型】Transformers大模型库(三):特殊标记(special tokens)

【AI大模型】Transformers大模型库(四):AutoTokenizer

【AI大模型】Transformers大模型库(五):AutoModel、Model Head及查看模型结构

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值