【AI大模型】Transformers大模型库(十五):timm库

 

目录

一、引言 

二、timm库

2.1 概述

2.2 使用方法

2.2.1 安装timm库

2.2.2 导入必要的库

2.2.3 数据预处理

2.2.4 选择模型

2.2.5 损失函数和优化器

2.2.6 训练模型

三、总结


一、引言 

 这里的Transformers指的是huggingface开发的大模型库,为huggingface上数以万计的预训练大模型提供预测、训练等服务。

🤗 Transformers 提供了数以千计的预训练模型,支持 100 多种语言的文本分类、信息抽取、问答、摘要、翻译、文本生成。它的宗旨是让最先进的 NLP 技术人人易用。
🤗 Transformers 提供了便于快速下载和使用的API,让你可以把预训练模型用在给定文本、在你的数据集上微调然后通过 model hub 与社区共享。同时,每个定义的 Python 模块均完全独立,方便修改和快速研究实验。
🤗 Transformers 支持三个最热门的深度学习库: Jax, PyTorch 以及 TensorFlow — 并与之无缝整合。你可以直接使用一个框架训练你的模型然后用另一个加载和推理。

本文重点介绍Hugging Face的timm库用法

二、timm库

2.1 概述

Hugging Face的timm库是一个用于计算机视觉的模型库,它提供了大量预训练的图像识别模型,以高效、易用为特点。

2.2 使用方法

2.2.1 安装timm库

首先,确保您已经安装了timm库。可以通过pip命令安装:

   pip install timm

2.2.2 导入必要的库

在Python脚本中,您需要导入timm库以及PyTorch库来构建和训练模型。 

   import torch
   import timm
   from torch.utils.data import DataLoader
   from torchvision import datasets, transforms

2.2.3 数据预处理

准备数据集并进行预处理,例如缩放、归一化等。 

   transform = transforms.Compose([
       transforms.Resize(256),
       transforms.CenterCrop(224),
       transforms.ToTensor(),
       transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
   ])

   dataset = datasets.ImageFolder('your_dataset_path', transform=transform)
   dataloader = DataLoader(dataset, batch_size=32, shuffle=True)

2.2.4 选择模型

timm库提供了很多模型,例如EfficientNet,ResNet等,这里以EfficientNet为例。

   model = timm.create_model('efficientnet_b0', pretrained=True)
   model.classifier = torch.nn.Linear(model.classifier.in_features, num_classes)  # 修改分类层,num_classes为您的类别数

2.2.5 损失函数和优化器

   criterion = torch.nn.CrossEntropyLoss()
   optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

2.2.6 训练模型

定义训练循环:

   device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
   model.to(device)

   for epoch in range(num_epochs):  # num_epochs为训练轮数
       for inputs, labels in dataloader:
           inputs, labels = inputs.to(device), labels.to(device)
           optimizer.zero_grad()
           outputs = model(inputs)
           loss = criterion(outputs, labels)
           loss.backward()
           optimizer.step()
       print(f'Epoch {epoch+1}/{num_epochs}, Loss: {loss.item()}')

三、总结

以上内容展示了如何使用huggingface的timm库,基于timm库内预定义的EfficientNet模型进行训练。

如果您还有时间,可以看看我的其他文章:

《AI—工程篇》

AI智能体研发之路-工程篇(一):Docker助力AI智能体开发提效

AI智能体研发之路-工程篇(二):Dify智能体开发平台一键部署

AI智能体研发之路-工程篇(三):大模型推理服务框架Ollama一键部署

AI智能体研发之路-工程篇(四):大模型推理服务框架Xinference一键部署

AI智能体研发之路-工程篇(五):大模型推理服务框架LocalAI一键部署

《AI—模型篇》

AI智能体研发之路-模型篇(一):大模型训练框架LLaMA-Factory在国内网络环境下的安装、部署及使用

AI智能体研发之路-模型篇(二):DeepSeek-V2-Chat 训练与推理实战

AI智能体研发之路-模型篇(三):中文大模型开、闭源之争

AI智能体研发之路-模型篇(四):一文入门pytorch开发

AI智能体研发之路-模型篇(五):pytorch vs tensorflow框架DNN网络结构源码级对比

AI智能体研发之路-模型篇(六):【机器学习】基于tensorflow实现你的第一个DNN网络

AI智能体研发之路-模型篇(七):【机器学习】基于YOLOv10实现你的第一个视觉AI大模型

AI智能体研发之路-模型篇(八):【机器学习】Qwen1.5-14B-Chat大模型训练与推理实战

AI智能体研发之路-模型篇(九):【机器学习】GLM4-9B-Chat大模型/GLM-4V-9B多模态大模型概述、原理及推理实战

《AI—Transformers应用》

【AI大模型】Transformers大模型库(一):Tokenizer

【AI大模型】Transformers大模型库(二):AutoModelForCausalLM

【AI大模型】Transformers大模型库(三):特殊标记(special tokens)

【AI大模型】Transformers大模型库(四):AutoTokenizer

【AI大模型】Transformers大模型库(五):AutoModel、Model Head及查看模型结构

<think>好的,我现在需要帮助用户了解和使用timm中的模型。首先,用户提到了引用[1]和[2],其中引用[1]介绍了使用create_model函数来创建模型,而引用[2]讨论了iRMB的设计优势。我需要结合这些信息来组织回答。 首先,我应该从安装和基本用法开始。用户可能对timm不熟悉,所以需要简明地介绍安装命令,比如pip install timm。然后,使用create_model创建模型,这部分要给出示例代码,并说明如何加载预训练权重,可能还需要提到不同的参数配置,比如更改类别数或者不加载预训练模型。 接下来,预训练模型的选择很重要。用户可能需要知道有哪些可用的模型,所以列出timm.list_models()函数,并给出过滤示例,比如基于EfficientNet的模型。这部分需要说明如何查找可用模型,并选择适合的预训练模型。 然后,模型配置和自定义也是关键部分。用户可能需要调整输入通道、类别数或者使用自定义参数。这里需要提到create_model的参数,比如pretrained、num_classes、in_chans,还有drop_rate等。同时,结合引用[2]中的iRMB设计,可以提到timm支持的最新模型架构,如EdgeNeXt、MobileNetV3等,这些适合移动端应用。 自定义模型实现部分,用户可能需要扩展timm的功能,比如添加自定义层。这里需要说明如何继承timm的模型类,并修改其中的模块。例如,替换ResNet的最后一个全连接层,或者修改注意力机制。这部分需要提供代码示例,并强调保持参数名称一致以便加载预训练权重。 在训练和推理部分,用户可能需要完整的流程指导。使用PyTorch的DataLoader加载数据,定义损失函数和优化器,编写训练循环。同时,可以提到使用timm的训练工具,如优化器、学习率调度器和训练循环,这些能简化流程。给出示例代码,比如使用AdamW优化器和CosineLRScheduler。 最后,性能优化和部署方面,用户可能关心如何提升模型效率。这里可以讨论混合精度训练、模型剪枝、量化技术,以及使用ONNX或TorchScript进行导出。例如,使用torch.cuda.amp进行混合精度训练,或者使用PyTorch的量化模块进行动态量化。 在相关问题部分,需要生成几个相关的问题,帮助用户进一步探索。比如如何查看可用模型、处理不同尺寸的输入、自定义模型结构、用于迁移学习、在移动端部署等。 整个过程中,需要确保使用正确的LaTeX格式,行内公式用$...$,独立公式用$$...$$,并且引用标记正确。同时,保持回答结构清晰,分步骤说明,结合代码示例和实际应用场景,确保用户能够逐步理解和应用timm。</think>以下是对`timm`中模型使用与实现的核心解析,结合代码示例和关键步骤说明: --- ### 一、安装与基础用法 1. **安装** ```bash pip install timm ``` 2. **创建预训练模型** ```python import timm model = timm.create_model('resnet50', pretrained=True) print(model.default_cfg) # 查看模型配置[^1] ``` 3. **修改模型参数** ```python model = timm.create_model('efficientnet_b0', pretrained=True, num_classes=10, # 修改输出类别数 drop_rate=0.2) # 添加Dropout层 ``` --- ### 二、预训练模型选择 1. **查看可用模型** ```python timm.list_models() # 列出所有模型 timm.list_models('*efficientnet*') # 过滤特定架构 ``` 2. **典型模型示例** - 轻量级模型:`mobilenetv3_small_100` - 高精度模型:`swin_base_patch4_window7_224` - 移动端优化模型:`edgenext_small`(结合iRMB技术提升性能)[^2] --- ### 三、模型配置与自定义 1. **输入参数调整** ```python model = timm.create_model('vit_base_patch16_224', in_chans=1, # 单通道输入 img_size=384) # 调整输入尺寸 ``` 2. **自定义模型结构** ```python class CustomModel(timm.models.ResNet): def __init__(self, **kwargs): super().__init__(block=timm.models.resnet.Bottleneck, layers=[3,4,6,3]) self.fc = nn.Linear(self.num_features, 1000) # 修改全连接层 model = CustomModel() ``` --- ### 四、训练与推理 1. **数据预处理** ```python data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=True) ``` 2. **训练流程** ```python optimizer = timm.optim.AdamW(model.parameters(), lr=1e-4) loss_fn = nn.CrossEntropyLoss() # 使用timm的scheduler scheduler = timm.scheduler.CosineLRScheduler(optimizer, t_initial=100) ``` --- ### 五、性能优化与部署 1. **混合精度训练** ```python with torch.cuda.amp.autocast(): output = model(input) ``` 2. **模型导出** ```python torch.onnx.export(model, input, "model.onnx") # 导出为ONNX格式 ``` --- ### 六、关键实现技术 - **动态架构支持**:通过`create_model`实现灵活模型构建 - **高效模块设计**:如iRMB模块融合CNN的局部性建模和Transformer的全局依赖捕获能力[^2] - **硬件适配优化**:自动选择适合当前设备的卷积实现(如CuDNN或Winograd) ---
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值