GEE数据集——NASA-USDA 增强型 SMAP 全球土壤水分数据

NASA-USDA 增强型 SMAP 全球土壤水分数据以 10 公里的空间分辨率提供全球土壤水分信息。该数据集包括: 地表 和地下 土壤水分 (mm)、 土壤水分剖面(%)、地表和地下土壤水分异常 (-)。

该数据集是通过使用一维集合卡尔曼滤波器 (EnKF) 数据同化方法将卫星衍生的土壤水分主动无源 (SMAP) 3 级土壤水分观测结果集成到修改后的两层 Palmer 模型中生成的。土壤水分异常是根据感兴趣当天的气候学计算的。气候学是根据 SMAP 卫星观测的完整数据记录和以 31 天为中心的移动窗口方法估算的。SMAP 土壤水分观测的同化有助于改进基于模型的土壤水分预测,特别是在世界上缺乏高质量降水数据的仪器设备较差的地区。

该数据集由美国宇航局戈达德太空飞行中心的水文科学实验室与美国农业部外国农业服务部和美国农业部水文与遥感实验室合作开发。

The NASA-USDA Enhanced SMAP Global soil moisture data provides soil moisture information across the globe at 10-km spatial resolution. This dataset includes: surface and subsurface soil moisture (mm), soil moisture profile (%), surface and subsurface soil moisture anomalies (-).

The dataset is generated by integrating satellite-derived Soil Moisture Active Passive (SMAP) Level 3 soil moisture observations into the modified two-layer Palmer model using a 1-D Ensemble Kalman Filter (EnKF) data assimilation approach. Soil moisture anomalies were computed from the climatology of the day of interest. The climatology was estimated based on the full data record of the SMAP satellite observation and the 31-day-centered moving-window approach. The assimilation of the SMAP soil moisture observations help improve the model-based soil moisture predictions particularly over poorly instrumented areas of the world that lack good quality precipitation data.

This dataset was developed by the Hydrological Science Laboratory at NASA's Goddard Space Flight Center in cooperation with USDA Foreign Agricultural Services and USDA Hydrology and Remote Sensing Lab.

Dataset Availability

2015-04-02T12:00:00Z–2022-07-30T12:00:00

Dataset Provider

NASA GSFC

Earth Engine Snippet

ee.ImageCollection("NASA_USDA/HSL/SMAP10KM_soil_moisture")

Bands

示例代码

var dataset = ee.ImageCollection('NASA_USDA/HSL/SMAP10KM_soil_moisture')
                  .filter(ee.Filter.date('2017-04-01', '2017-04-30'));
var soilMoisture = dataset.select('ssm');
var soilMoistureVis = {
  min: 0.0,
  max: 28.0,
  palette: ['0300ff', '418504', 'efff07', 'efff07', 'ff0303'],
};
Map.setCenter(-6.746, 46.529, 2);
Map.addLayer(soilMoisture, soilMoistureVis, 'Soil Moisture');

展示

土壤湿度指数(SMI)下载代码

 

//定义研究区
var AOI: Table users/username/boundary_name


//------------SMI-----------------

//从目录中导入土壤水分数据并给出时间段
var soil_moisture = ee.ImageCollection("NASA_USDA/HSL/SMAP10KM_soil_moisture")
  .filterDate('yyyy-mm-dd', 'yyyy-mm-dd');

//选择波段, ssm/smp...
soil_moisture = soil_moisture.select('ssm').mean().clip(AOI)

//可视化参数
var soilMoistureVis = {
  min: 0,
  max: 25.39,
  palette: ['red', 'yellow', 'white', 'green', 'blue'],
}

Map.addLayer(soil_moisture.clip(AOI), soilMoistureVis, 'Soil Moisture');

//get the mean average of raster values to each hexagon polygon
var Zonal_SMI = soil_moisture.reduceRegions(AOI, ee.Reducer.mean(), 90)

Export.table.toDrive({
collection: Zonal_SMI,
description:'SMI',
fileFormat: 'GeoJSON'
});

/*
//option for more than 20000 local boundary polygons; create a polygon around the area
// Export the image, specifying scale and region.
Export.image.toDrive({
  image: soil_moisture.clip(AOI),
  description: 'soilmoisture',
  scale: 90,
  maxPixels: 1e10,
  region: AOI
});
*/

展示

### GEE 中土壤湿度数据集获取与使用方法 #### 选择合适的土壤湿度数据集 在 Google Earth Engine (GEE) 平台中,可以利用多个不同来源的数据集来研究土壤湿度。其中 NASA 的 GLDAS 数据集提供了详细的土壤湿度信息[^1]。此外,NASAUSDA 合作开发的 SMAP(Soil Moisture Active Passive)项目也提供了高精度的全球土壤水分数据,空间分辨率为 10 公里[^3]。 #### 加载并探索数据集 为了加载这些数据集,在 JavaScript 或 Python API 下可以通过 `ee.ImageCollection` 对象访问相应的集合名称。对于GLDAS数据集而言,其ID通常为 `"NASA/GLDAS/V021/NOAH/G025/T3H"`;而对于SMAP,则可能是 `"NASA_USDA/HSL/SMAP10KM_SOIL_MOISTURE"`[^4]。 ```javascript // Load a specific dataset by ID. var gldasDataset = ee.ImageCollection('NASA/GLDAS/V021/NOAH/G025/T3H'); print(gldasDataset.first()); // Print metadata of first image. var smapDataset = ee.ImageCollection('NASA_USDA/HSL/SMAP10KM_SOIL_MOISTURE'); print(smapDataset.first()); ``` #### 进行时间和地理过滤 当处理长时间序列或多地区范围的研究时,应该先定义感兴趣的时间区间以及地理位置边界框或矢量文件作为掩膜层应用到原始影像上。这有助于减少计算资源消耗并提高效率[^2]。 ```javascript // Define time range and region of interest. var startDate = '2020-01-01'; var endDate = '2020-12-31'; // Example ROI as point coordinates or geometry object. var roiPoint = ee.Geometry.Point([-122.085, 37.422]); gldasDataset = gldasDataset.filterDate(startDate, endDate).filterBounds(roiPoint); smapDataset = smapDataset.filterDate(startDate, endDate).filterBounds(roiPoint); // Extracting values at points can be done with reduceRegion() method. var sampleValueAtPoint = gldasDataset.mean().reduceRegion({ reducer: ee.Reducer.first(), geometry: roiPoint, scale: 25000 // Adjust based on your needs. }); print(sampleValueAtPoint.get('RootMoist_inst')); // Replace band name accordingly. ``` #### 可视化和导出结果 最后一步是创建可视化图表或将处理后的图像保存至云端存储服务以便进一步分析。这里展示了如何绘制时间序列图表示某一点处随时间变化的趋势。 ```javascript // Create chart from ImageCollection over specified location. var chart = ui.Chart.image.seriesByRegion({ imageCollection: gldasDataset.select(['RootMoist_inst']), regions: roiPoint.buffer(1), reducer: ee.Reducer.mean(), scale: 25000, seriesProperty: 'label', xProperty: 'system:time_start' }); print(chart.setOptions({title: 'Time Series Chart'})); ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值