GEE数据集——ERA5 每日再分析数据

ERA5是欧洲中期天气预报中心的气候再分析系统,结合模型数据和全球观测,提供1979年以来的详细气候信息。ERA5DAILY提供每日参数如2米气温、降水量等。用户可以利用GoogleEarthEngine进行加载和可视化这些数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ERA5 是对全球气候的第五代 ECMWF 大气再分析。再分析将模型数据与来自世界各地的观察结果结合成一个全球完整且一致的数据集。ERA5 取代了其前身 ERA-Interim 再分析。

ERA5 DAILY 每天提供七个 ERA5 气候再分析参数的汇总值:2m 气温、2m 露点温度、总降水量、平均海平面压力、地表压力、10m 风的 u 分量和 10m 的风分量。此外,根据每小时 2m 气温数据计算了每天 2m 处的最低和最高气温。每日总降水量值以每日总和的形式给出。所有其他参数均以每日平均值的形式提供。

ERA5 数据可从 1979 年实时获取到三个月。更多信息和更多 ERA5 大气参数可以在 哥白尼气候数据存储中找到。

提供者说明:每日汇总是根据每个参数的 ERA5 小时值计算的。

ERA5 is the fifth generation ECMWF atmospheric reanalysis of the global climate. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset. ERA5 replaces its predecessor, the ERA-Interim reanalysis.

ERA5 DAILY provides aggregated values for each day for seven ERA5 climate reanalysis parameters: 2m air temperature, 2m dewpoint temperature, total precipitation, mean sea level pressure, surface pressure, 10m u-component of wind and 10m v-component of wind. Additionally, daily minimum and maximum air temperature at 2m has been calculated based on the hourly 2m air temperature data. Daily total precipitation values are given as daily sums. All other parameters are provided as daily averages.

ERA5 data is available from 1979 to three months from real-time. More information and more ERA5 atmospheric parameters can be found at the Copernicus Climate Data Store.

Provider's Note: Daily aggregates have been calculated based on the ERA5 hourly values of each parameter.

Dataset Availability

1979-01-02T00:00:00Z–2020-07-09T00:00:00

Dataset Provider

ECMWF / Copernicus Climate Change Service

Earth Engine Snippet

ee.ImageCollection("ECMWF/ERA5/DAILY")

Bands

示例代码

 

// Example script to load and visualize ERA5 climate reanalysis parameters in
// Google Earth Engine

// Daily mean 2m air temperature
var era5_2mt = ee.ImageCollection('ECMWF/ERA5/DAILY')
                   .select('mean_2m_air_temperature')
                   .filter(ee.Filter.date('2019-07-01', '2019-07-31'));
print(era5_2mt);

// Daily total precipitation sums
var era5_tp = ee.ImageCollection('ECMWF/ERA5/DAILY')
                  .select('total_precipitation')
                  .filter(ee.Filter.date('2019-07-01', '2019-07-31'));

// Daily mean 2m dewpoint temperature
var era5_2d = ee.ImageCollection('ECMWF/ERA5/DAILY')
                  .select('dewpoint_2m_temperature')
                  .filter(ee.Filter.date('2019-07-01', '2019-07-31'));

// Daily mean sea-level pressure
var era5_mslp = ee.ImageCollection('ECMWF/ERA5/DAILY')
                    .select('mean_sea_level_pressure')
                    .filter(ee.Filter.date('2019-07-01', '2019-07-31'));

// Daily mean surface pressure
var era5_sp = ee.ImageCollection('ECMWF/ERA5/DAILY')
                  .select('surface_pressure')
                  .filter(ee.Filter.date('2019-07-01', '2019-07-31'));

// Daily mean 10m u-component of wind
var era5_u_wind_10m = ee.ImageCollection('ECMWF/ERA5/DAILY')
                          .select('u_component_of_wind_10m')
                          .filter(ee.Filter.date('2019-07-01', '2019-07-31'));

// Convert pressure levels from Pa to hPa - Example for surface pressure
var era5_sp = era5_sp.map(function(image) {
  return image.divide(100).set(
      'system:time_start', image.get('system:time_start'));
});

// Visualization palette for total precipitation
var visTp = {
  min: 0,
  max: 0.1,
  palette: ['#FFFFFF', '#00FFFF', '#0080FF', '#DA00FF', '#FFA400', '#FF0000']
};

// Visualization palette for temperature (mean, min and max) and 2m dewpoint
// temperature
var vis2mt = {
  min: 250,
  max: 320,
  palette: [
    '#000080', '#0000D9', '#4000FF', '#8000FF', '#0080FF', '#00FFFF', '#00FF80',
    '#80FF00', '#DAFF00', '#FFFF00', '#FFF500', '#FFDA00', '#FFB000', '#FFA400',
    '#FF4F00', '#FF2500', '#FF0A00', '#FF00FF'
  ]
};

// Visualization palette for u- and v-component of 10m wind
var visWind = {
  min: 0,
  max: 30,
  palette: [
    '#FFFFFF', '#FFFF71', '#DEFF00', '#9EFF00', '#77B038', '#007E55', '#005F51',
    '#004B51', '#013A7B', '#023AAD'
  ]
};

// Visualization palette for pressure (surface pressure, mean sea level
// pressure) - adjust min and max values for mslp to min:990 and max:1050
var visPressure = {
  min: 500,
  max: 1150,
  palette: [
    '#01FFFF', '#058BFF', '#0600FF', '#DF00FF', '#FF00FF', '#FF8C00', '#FF8C00'
  ]
};


// Add layer to map
Map.addLayer(
    era5_tp.filter(ee.Filter.date('2019-07-15')), visTp,
    'Daily total precipitation sums');
Map.addLayer(
    era5_2d.filter(ee.Filter.date('2019-07-15')), vis2mt,
    'Daily mean 2m dewpoint temperature');
Map.addLayer(
    era5_2mt.filter(ee.Filter.date('2019-07-15')), vis2mt,
    'Daily mean 2m air temperature');
Map.addLayer(
    era5_u_wind_10m.filter(ee.Filter.date('2019-07-15')), visWind,
    'Daily mean 10m u-component of wind');
Map.addLayer(
    era5_sp.filter(ee.Filter.date('2019-07-15')), visPressure,
    'Daily mean surface pressure');

Map.setCenter(21.2, 22.2, 2);

展示

### 使用 Google Earth Engine (GEE) 下载 ERA5-Land 月度平均地表温度数据 Google Earth Engine 提供了一个强大的平台来处理和分析地球科学数据ERA5-Land 数据集是一个重要的再分析数据源,提供高分辨率的地表气候变量[^1]。以下是关于如何通过 GEE 平台获取并导出 ERA5-Land 的月度平均地表温度数据的具体方法。 #### 1. 加载 ERA5-Land 温度数据集合 在 GEE 中,ERA5-Land 数据可以通过 `ee.ImageCollection` 对象加载。具体来说,可以使用 `"ECMWF/ERA5_LAND/MONTHLY"` 集合访问这些数据: ```javascript var era5Land = ee.ImageCollection('ECMWF/ERA5_LAND/MONTHLY'); ``` 此集合包含了多种气象参数,其中包括地表气温(`mean_2m_air_temperature`),即我们所需的月度平均地表温度数据。 #### 2. 过滤时间和区域 为了提取特定时间段的数据以及限定地理范围,需应用过滤器函数。例如,假设要获取某一年某一地区的月度平均温度数据: ```javascript // 定义研究区边界 (AOI) var aoi = ee.Geometry.Rectangle([70, 15, 140, 55]); // 示例:中国地区经纬度范围 // 设置时间范围 var startDate = '2022-01-01'; var endDate = '2022-12-31'; // 应用筛选条件 var filteredEra5 = era5Land.filterDate(startDate, endDate).filterBounds(aoi); ``` 上述代码片段定义了感兴趣的研究区域 (`aoi`) 和目标年份的时间跨度,并将其应用于图像集合以缩小检索范围。 #### 3. 获取指定波段 ERA5-Land 数据集中包含许多不同的波段,而我们需要的是代表地面空气温度的波段——通常标记为 `mean_2m_air_temperature` 或类似的名称。因此,在进一步操作之前应先选择这一特定波段: ```javascript filteredEra5 = filteredEra5.select('mean_2m_air_temperature'); ``` 这一步骤确保后续计算仅涉及所关心的物理量。 #### 4. 导出数据至本地文件 最后一步是从平台上将选定的数据导出到个人计算机上保存下来。利用 GEE 自带的任务管理功能完成这项工作非常方便快捷: ```javascript Export.image.toDrive({ image: filteredEra5.mean(), description: 'Monthly_Avg_Temp', scale: 5000, region: aoi, maxPixels: 1e13 }); ``` 这里设置了输出影像描述符、空间分辨率为原始数据精度(大约5公里),同时还指定了最大允许像素数以防超出配额限制。 以上就是整个流程概述,涵盖了从加载数据直到最终下载的所有必要环节。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值