文章标题:GhostNet: More Features from Cheap Operations
作者单位:Noah’s Ark Lab, Huawei Technologies;Peking University;School of Computer Science, Faculty of Engineering, University of Sydney
网络精度:TOP-1 Accuracy 73.9%(1.0x) 75.7%(1.5x)
1. 核心思路
对于 SOTA 的网络,通常会包含丰富甚至冗余的特征图,以保证对输入数据有全面的理解。GhostNet 从冗余特征图角度思考构建轻量化网络,不同于依靠传统卷积操作生成冗余特征图的方式,GhostNet 仅采用少量传统卷积生成部分特征图,然后对这部分特征图做简单的线性变化(用作者的话说,这种操作比较 cheap ),得到所需数量的特征图,这个操作可以增加特征图的冗余性,“模拟”传统卷积的效果。
2. 详解
2.1 冗余特征图问题
诸如 ResNet-50 等 SOTA 的网络结构通常存在大量的冗余或相似的特征图,如下图。
冗余的特征图是非常有必要的,可以保证网络对输入数据的理解更为全面。
2.2 Ghost Module
考虑到主流 CNN 计算得到的中间特征图存在冗余现象,GhostNet 提出减少产生冗余特征图过程计算消耗,也就是减少卷积数量,最终构建 Ghost Module 实现了以更少的参数产生更多的特征图(如下图(b))。
其中, Φ i Φ_i Φi 为线性变换。实际操作中, Φ i Φ_i Φi 的变换方法不固定,可以是 3x3 线性核或者 5x5 线性核(其实有点类似深度卷积思想,但不同的是深度卷积前后的通道数相同,而这里 Φ i Φ_i Φi 可以产生所需要的通道数,并且可以对同一通道特征图进行多次线性变换【其实当 s 取 2 时, Φ i Φ_i Φi 就是原原本本的深度卷积】)。另外,理论上可以使用不同尺寸大小的卷积核组合进行线性变换操作,但考虑到 CPU 或 GPU 的推理情况,作者建议全部使用 3x3 卷积核或全部使用 5x5 卷积核。
例如:输出 n 张特征图的情形,Ghost Module 具有一个恒等映射(即通过传统卷积方式得到 m 张特征图)和 m ⋅ ( s − 1 ) = ( s − 1 ) ⋅ n s m·(s-1)=\frac{(s-1)·n}{s} m⋅(s−1)=s(s−1)⋅n 个线性运算( n = m ⋅ s n=m·s n=m⋅s),并且每个线性运算的卷积核大小为d·d,可以推理出理论上Ghost Module和标准卷积得到相同数量特征图的加速比和参数压缩比。假设 k=d ,并且 s 远小于 c ,则其理论加速比为:
r s = n ⋅ h ′ ⋅ w ′ ⋅ c ⋅ k ⋅ k n s ⋅ h ′ ⋅ w ′ ⋅ c ⋅ k ⋅ k + ( s − 1 ) ⋅ n s ⋅ h ′ ⋅ w ′ ⋅ d ⋅ d = c ⋅ k ⋅ k 1 s ⋅ c ⋅ k ⋅ k + s − 1 s ⋅ d ⋅ d ≈ s ⋅ c s + c − 1 ≈ s r_s =\frac{n·h'·w'·c·k·k}{\frac{n}{s}·h'·w'·c·k·k+(s-1)·\frac{n}{s}·h'·w'·d·d} = \frac{c·k·k}{\frac{1}{s}·c·k·k+\frac{s-1}{s}·d·d}≈\frac{s·c}{s+c-1}≈s rs=sn⋅h′⋅w′⋅c⋅k⋅k+(s−1)⋅sn⋅h′⋅w′⋅d⋅dn⋅h′⋅w′⋅c⋅k⋅k=s1⋅c⋅k⋅k+ss−1⋅d⋅dc⋅k⋅k≈s+c−1s⋅c≈s
其参数压缩比为:
r c = n ⋅ c ⋅ k ⋅ k n s ⋅ c ⋅ k ⋅ k + ( s − 1 ) ⋅ n s ⋅ d ⋅ d ≈ s ⋅ c s + c − 1 ≈ s r_c=\frac{n·c·k·k}{\frac{n}{s}·c·k·k+(s-1)·\frac{n}{s}·d·d}≈\frac{s·c}{s+c-1}≈s rc=sn⋅c⋅k⋅k+(s−1)⋅sn⋅d⋅dn⋅c⋅k⋅k≈s+c−1s⋅c≈s
因此,理论上使用 Ghost Module 可以节约 s 倍的训练时间,缩减 s 倍的参数。【超参数 s 和 k 可以调整,s 用于调整传统卷积方式的特征图数量, d 为线性转换卷积核大小】
2.3 Ghost Bottleneck(G-bneck)
在一个 G-bneck 中存在两个 Ghost module ,其中第一个 Ghost module 用于增加通道数(expansion layer),指定输出和输入通道数之间的比例为扩张比。第二个 Ghost module 减少通道数以匹配 shortcut 分支的通道。当步长为 2 时,在两个 Ghost module 中间加入一个步长为 2 的深度卷积层。
2.4 网络结构
2.5 GhostNet的性能表现
同 MobileNet V1 等诸多轻量化网络一样,GhostNet 也引入超参数 Width Multiplier(α)用于压缩或扩张模型(改变通道数,具体可见 MobileNet V1 )。