轻量化网络系列 | 解读GHostNet

GhostNet是一种高效的轻量化网络结构,通过减少冗余特征图计算,实现更快的训练速度和更小的模型体积。该网络利用GhostModule仅需少量传统卷积生成特征图,再通过简单线性变换增加特征图数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章标题:GhostNet: More Features from Cheap Operations

作者单位:Noah’s Ark Lab, Huawei Technologies;Peking University;School of Computer Science, Faculty of Engineering, University of Sydney

网络精度:TOP-1 Accuracy 73.9%(1.0x) 75.7%(1.5x)

1. 核心思路

对于 SOTA 的网络,通常会包含丰富甚至冗余的特征图,以保证对输入数据有全面的理解。GhostNet 从冗余特征图角度思考构建轻量化网络,不同于依靠传统卷积操作生成冗余特征图的方式,GhostNet 仅采用少量传统卷积生成部分特征图,然后对这部分特征图做简单的线性变化(用作者的话说,这种操作比较 cheap ),得到所需数量的特征图,这个操作可以增加特征图的冗余性,“模拟”传统卷积的效果。

2. 详解

2.1 冗余特征图问题

诸如 ResNet-50 等 SOTA 的网络结构通常存在大量的冗余或相似的特征图,如下图。

在这里插入图片描述

冗余的特征图是非常有必要的,可以保证网络对输入数据的理解更为全面。

2.2 Ghost Module

考虑到主流 CNN 计算得到的中间特征图存在冗余现象,GhostNet 提出减少产生冗余特征图过程计算消耗,也就是减少卷积数量,最终构建 Ghost Module 实现了以更少的参数产生更多的特征图(如下图(b))。

在这里插入图片描述

其中, Φ i Φ_i Φi 为线性变换。实际操作中, Φ i Φ_i Φi 的变换方法不固定,可以是 3x3 线性核或者 5x5 线性核(其实有点类似深度卷积思想,但不同的是深度卷积前后的通道数相同,而这里 Φ i Φ_i Φi 可以产生所需要的通道数,并且可以对同一通道特征图进行多次线性变换【其实当 s 取 2 时, Φ i Φ_i Φi 就是原原本本的深度卷积】)。另外,理论上可以使用不同尺寸大小的卷积核组合进行线性变换操作,但考虑到 CPU 或 GPU 的推理情况,作者建议全部使用 3x3 卷积核或全部使用 5x5 卷积核。

例如:输出 n 张特征图的情形,Ghost Module 具有一个恒等映射(即通过传统卷积方式得到 m 张特征图)和 m ⋅ ( s − 1 ) = ( s − 1 ) ⋅ n s m·(s-1)=\frac{(s-1)·n}{s} m(s1)=s(s1)n 个线性运算( n = m ⋅ s n=m·s n=ms),并且每个线性运算的卷积核大小为d·d,可以推理出理论上Ghost Module和标准卷积得到相同数量特征图的加速比和参数压缩比。假设 k=d ,并且 s 远小于 c ,则其理论加速比为:

r s = n ⋅ h ′ ⋅ w ′ ⋅ c ⋅ k ⋅ k n s ⋅ h ′ ⋅ w ′ ⋅ c ⋅ k ⋅ k + ( s − 1 ) ⋅ n s ⋅ h ′ ⋅ w ′ ⋅ d ⋅ d = c ⋅ k ⋅ k 1 s ⋅ c ⋅ k ⋅ k + s − 1 s ⋅ d ⋅ d ≈ s ⋅ c s + c − 1 ≈ s r_s =\frac{n·h'·w'·c·k·k}{\frac{n}{s}·h'·w'·c·k·k+(s-1)·\frac{n}{s}·h'·w'·d·d} = \frac{c·k·k}{\frac{1}{s}·c·k·k+\frac{s-1}{s}·d·d}≈\frac{s·c}{s+c-1}≈s rs=snhwckk+(s1)snhwddnhwckk=s1ckk+ss1ddckks+c1scs

其参数压缩比为:

r c = n ⋅ c ⋅ k ⋅ k n s ⋅ c ⋅ k ⋅ k + ( s − 1 ) ⋅ n s ⋅ d ⋅ d ≈ s ⋅ c s + c − 1 ≈ s r_c=\frac{n·c·k·k}{\frac{n}{s}·c·k·k+(s-1)·\frac{n}{s}·d·d}≈\frac{s·c}{s+c-1}≈s rc=snckk+(s1)snddnckks+c1scs

因此,理论上使用 Ghost Module 可以节约 s 倍的训练时间,缩减 s 倍的参数。【超参数 s 和 k 可以调整,s 用于调整传统卷积方式的特征图数量, d 为线性转换卷积核大小】

2.3 Ghost Bottleneck(G-bneck)

在这里插入图片描述

在一个 G-bneck 中存在两个 Ghost module ,其中第一个 Ghost module 用于增加通道数(expansion layer),指定输出和输入通道数之间的比例为扩张比。第二个 Ghost module 减少通道数以匹配 shortcut 分支的通道。当步长为 2 时,在两个 Ghost module 中间加入一个步长为 2 的深度卷积层。

2.4 网络结构

在这里插入图片描述

2.5 GhostNet的性能表现

在这里插入图片描述

同 MobileNet V1 等诸多轻量化网络一样,GhostNet 也引入超参数 Width Multiplier(α)用于压缩或扩张模型(改变通道数,具体可见 MobileNet V1 )。

在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值