OpenCV系列 | 直方图均衡提升图像对比度(equalizeHist)

本文介绍了如何使用OpenCV库通过直方图均衡化技术来提升图像的对比度,以使图像中的物体和形状更加突出。首先展示了原图,然后通过将彩色图像转换为YUV格式并处理Y通道,再转换回RGB格式,实现了对比度的提升。对于灰度图像,可以直接应用equalizeHist函数进行直方图均衡化。文章提供了代码示例和对比结果,展示直方图均衡化前后图像的差异。
摘要由CSDN通过智能技术生成

直方图均衡可以使图像中的物体和形状更为突出。

举个例子,某张轮船的原图如下:

在这里插入图片描述
现使用OpenCV提升对比度:

import cv2
import matplotlib.pyplot as plt
import numpy as np
ship = cv2.imread('ship.jpg',cv2.IMREAD_COLOR)[:,:,::-1]
plt.imshow(ship)
plt.show()

提升对比度前的输出图像结果:

在这里插入图片描述

# 提升对比度
ship_new = cv2.cvtColor(ship,cv2.COLOR_RGB2YUV) # 因为是彩色图像,需要先转换为YUV格式,再进行处理,处理后再转换为RGB格式
# 若是灰色图像,则可以直接应用
ship_new[:,:,0] = cv2.equalizeHist(ship_new[:,:,0]) # 对比度改变的是Y这个通道
ship_new = cv2.cvtColor(ship_new,cv2.COLOR_YUV2RGB)
plt.imshow(ship_new)
plt.show()

提升对比度后的输出图像结果:

在这里插入图片描述
提升前后的对比结果:

在这里插入图片描述

左侧为原图,右侧为提升后的结果。


如果是更为特殊的灰度图,那么操作就变得简单起来。

# 灰色图像直接应用equalizeHist
ship_gray = cv2.imread('ship.jpg',cv2.IMREAD_GRAYSCALE)
ship_gray.shape # 确认是否是灰度图
# 输出,确认是灰度图
(375, 500)

直接进行直方图均衡化:

ship_gray_new = cv2.equalizeHist(ship_gray)
plt.figure(figsize=(50,100))
plt.subplot(1,2,1)
plt.imshow(ship_gray)
plt.title('Before',size=90)
plt.axis('off')
plt.subplot(1,2,2)
plt.imshow(ship_gray_new)
plt.title('After',size=90)
plt.axis('off')
plt.tight_layout()
plt.show()

输出结果如下,左侧为原图,右侧为提升对比度后的结果。

在这里插入图片描述

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值