目标检测Precision/Recall curve中AP曲线为什么呈现下降趋势

在学习时发现在Precision/Recall curve中,ap是不断下降的

混淆矩阵

  • 精度Precision(查准率)是评估预测的准不准(看预测列)
  • 召回率Recall(查全率)是评估找的全不全(看实际行)

loU(Intersection over Union )

loU 为 1 表示预测的边界框和真实的边界框(ground-truth bounding boxes)完全重叠。
你可以设置一个阈值来确定 loU,以判断物体检测是否有效。
假设你将 loU 设置为 0.5,在这种情况下:

  • 如果 loU ≥ 0.5,将物体检测分类为真正例(True Positive,TP)
  • 如果 loU < 0.5,则将其视为错误的检测,并将其分类为假正例(False Positive,FP)
  • 当图像中存在真实的物体,但模型未能检测到该物体时,将其分类为假负例(False Negative,FN)。
  • 真负例(True Negative,TN):TN 是图像中我们没有预测到物体的每一个部分。这个指标对于物体检测来说并不有用,因此我们忽略 TN。

AP(Average Precision)

  • AP衡量的是学习出来的模型在每个类别上的好坏
  • mAP衡量的是学出的模型在所有类别上的好坏。mAP就是取所有类别上AP的平均值

 AP in PASCAL VOC challeliy


对于PASCAL VOC挑战,如果loU>0.5,则预测为正样本(TP)。但是,如果检测到
同一目标的多个检测,则视第一个检测为正样本(TP),而视其余检测为负样本(FP)。

 COCO AP & mAP

AP@.50 指的是在 loU(IoU,交并比)等于 0.50 时的 AP(平均精度)值。
AP@.75 指的是在 loU 等于 0.75 时的 AP 值。
对于 COCO 数据集来说,AP 是在多个 loU 级别上的平均值(考虑一个匹配为正例的最小 loU 值)。
AP@[.5:.95] 对应于从 0.5 到 0.95 的 loU 级别上的平均 AP,步长为 0.05。
对于 COCO 竞赛,AP 是在 80 个类别上的 10 个 loU 级别上的平均值(AP@[.50:.05:.95]:从 0.5 开始到 0.95 结束,步长为 0.05)。

下图为常见AP指标的解释 

用一个简单的例子来演示平均精度(AP)的计算。假设数据集中总共有5个苹果。我们收集模型为苹果作的所有预测,并根据预测的置信水平(从最高到最低)对其进行排名。第二列表示预测是否正确。如果它与ground truth匹配并且IoU≥0.5,则是正确的。 

可以看到,recall是一直在上升的,precision是有波动的。 

 使用11点法计算AP

此规则是10年之前PASCAL VOC CHALLENGE使用的

规则是向右看齐,把折线都拉伸成水平, 再计算下方的面积

这近似于找到绿色曲线下的总面积并将其除以11。下面是更精确的定义: 

 AUC法(Area Under Curve)计算AP

PASCAL VOC CHALLENGE自2010年后换了一种计算方法。新的计算方法假设这N个样本中有M个正例,那么我们会得到M个recall值(1/M,2/M,...,M/M),对于每个recall值r,我们可以计算出
对应(r'>r)的最大precision,然后对这M个precision值取平均即得到最后的AP值。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Zhi non

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值