洛必达法则及极限问题总结

本文总结了洛必达法则及其在解决极限问题中的应用,包括多项式、三角函数、指数函数和对数函数的极限求解策略。洛必达法则适用于处理未定式的极限,而对不同类型的函数,如多项式,可以因式分解并利用最高次项;三角函数则涉及特殊极限和图像性质;指数函数关注重要极限和增长速度;对数函数在x趋近于0+时趋于负无穷,其增长缓慢。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

14.洛必达法则及极限问题总结

14.1 洛必达法则(l’Hopital’s Rule)

只要将值分别代入分子分母后满足未定式,就可以一直使用洛必达法则

14.1.1 洛必达法则的简单推导

14.1.2 洛必达法则类型的求解方法总结

14.2 极限问题总结

14.2.1 多项式和多项式型函数的极限求解

具体见本人博客第4章

多项式

多项式型函数

方法:

  1. 因式分解,约公因式
  2. 最大次数的项决定该极限的值,同时除以并乘以该项

14.2.2 三角函数和反三角函数的极限求解

具体见本人博客第7章

1.记住图像以及特殊点处函数值

2.重要极限

lim ⁡ A → 0 s i n ( A ) A = 1 \lim_{A\rightarrow 0}\frac{sin(A)}{A}=1 A0limAsin(A)=1

lim ⁡ A → 0 t a n ( A ) A = 1 \lim_{A\rightarrow 0}\frac{tan(A)}{A}=1 A0limAtan(A)=1

lim ⁡ A → 0 c o s ( A ) = 1 \lim_{A\rightarrow 0}cos(A)=1 A0limcos(A)=1

3.利用三角函数特性
∣ s i n ( x ) ∣ ≤ 1 ∣ c o s ( x ) ∣ ≤ 1 |sin(x)| \leq 1 \\ |cos(x)| \leq 1 sin(x)1cos(x)1

14.2.3 指数函数的极限求解

具体见本人博客第九章

1.重要极限
lim ⁡ h → 0 ( 1 + h x ) 1 h = e x \lim_{h\rightarrow 0}(1+hx)^{\frac{1}{h}}=e^x h0lim(1+hx)h1=ex

lim ⁡ n → ∞ ( 1 + x n ) n = e x \lim_{n\rightarrow\infty}(1+\frac{x}{n})^n=e^x nlim(1+nx)n=ex


2.用 1 1 1 替代 e 0 e^0 e0

3.当 x → ∞ x\rightarrow\infty x 时,指数函数增长得很快

14.2.4 对数函数的极限求解

具体见本人博客第九章

x → 0 + x\rightarrow0^+ x0+时,对数函数趋于 − ∞ -\infty ,即对于任何大于 0 0 0 的数 a,无论 a a a 有多小,有


对数增长得很慢,比任何多项式都慢

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Uncertainty!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值