Chapter14:洛必达法则及极限问题总结
14.洛必达法则及极限问题总结
14.1 洛必达法则(l’Hopital’s Rule)
只要将值分别代入分子分母后满足未定式,就可以一直使用洛必达法则
14.1.1 洛必达法则的简单推导
14.1.2 洛必达法则类型的求解方法总结
14.2 极限问题总结
14.2.1 多项式和多项式型函数的极限求解
多项式
多项式型函数
方法:
- 因式分解,约公因式
- 最大次数的项决定该极限的值,同时除以并乘以该项
14.2.2 三角函数和反三角函数的极限求解
1.记住图像以及特殊点处函数值
2.重要极限
lim A → 0 s i n ( A ) A = 1 \lim_{A\rightarrow 0}\frac{sin(A)}{A}=1 A→0limAsin(A)=1
lim A → 0 t a n ( A ) A = 1 \lim_{A\rightarrow 0}\frac{tan(A)}{A}=1 A→0limAtan(A)=1
lim A → 0 c o s ( A ) = 1 \lim_{A\rightarrow 0}cos(A)=1 A→0limcos(A)=1
3.利用三角函数特性
∣
s
i
n
(
x
)
∣
≤
1
∣
c
o
s
(
x
)
∣
≤
1
|sin(x)| \leq 1 \\ |cos(x)| \leq 1
∣sin(x)∣≤1∣cos(x)∣≤1
14.2.3 指数函数的极限求解
1.重要极限
lim
h
→
0
(
1
+
h
x
)
1
h
=
e
x
\lim_{h\rightarrow 0}(1+hx)^{\frac{1}{h}}=e^x
h→0lim(1+hx)h1=ex
lim n → ∞ ( 1 + x n ) n = e x \lim_{n\rightarrow\infty}(1+\frac{x}{n})^n=e^x n→∞lim(1+nx)n=ex
2.用
1
1
1 替代
e
0
e^0
e0
3.当 x → ∞ x\rightarrow\infty x→∞ 时,指数函数增长得很快
14.2.4 对数函数的极限求解
当
x
→
0
+
x\rightarrow0^+
x→0+时,对数函数趋于
−
∞
-\infty
−∞,即对于任何大于
0
0
0 的数 a,无论
a
a
a 有多小,有
对数增长得很慢,比任何多项式都慢