复数(Complex Number)

28.复数

28.1 基础

一个数是虚数,意思是它的平方是一个负数


i 0 、 i 1 、 i 2 、 i 3 、 i 4 ⋯   1 、 i 、 − 1 、 − i 、 1 ⋯ i^0、i^1、i^2、i^3、i^4 \cdots\\ ~\\ 1、i、-1、-i、1\cdots i0i1i2i3i4 1i1i1
四个( 1 、 i 、 − 1 、 − i 1、i、-1、-i 1i1i)为一个周期

复数 z = x + y i z=x+yi z=x+yi
实部 R e ( z ) = x Re(z)=x Re(z)=x
虚部 I m ( z ) = y Im(z)=y Im(z)=y

复数 z = x + y i z=x+yi z=x+yi 的共轭复数 z ˉ = x − y i \bar{z}=x-yi zˉ=xyi
复数 z = x + y i z=x+yi z=x+yi 的模 ∣ z ∣ = ∣ x + y i ∣ = x 2 + y 2 |z|=|x+yi|=\sqrt{x^2+y^2} z=x+yi=x2+y2

z z ˉ = ( a + b i ) ( a − b i ) = a 2 − a b i + a b i − b 2 i 2 = a 2 + b 2 = ∣ z ∣ 2 z\bar{z}=(a+bi)(a-bi)=a^2-abi+abi-b^2i^2=a^2+b^2=|z|^2 zzˉ=(a+bi)(abi)=a2abi+abib2i2=a2+b2=z2

复指数函数
e z = ∑ n = 0 ∞ z n n ! ( 其中 z = x + y i ) e^z=\sum_{n=0}^{\infty}\frac{z^n}{n!}\quad ( 其中z=x+yi ) ez=n=0n!zn(其中z=x+yi)
e z e w = e z + w e^ze^w=e^{z+w} ezew=ez+w

28.2 复平面

将每个点看作一个复数,而不是一对实数
笛卡尔坐标系中点 ( x , y ) (x,y) (x,y) 在复平面中用一个复数 z = x + i y z=x+iy z=x+iy 表示


复平面内极坐标为 ( r , θ ) (r,\theta) (r,θ) 的点表示的复数是什么?


对于不在单位圆上的点,只需乘以 r r r

如果 z z z 由极坐标系下的点 ( r , θ ) (r,\theta) (r,θ) 表示,则 z = r cos ⁡ ( θ ) + i r sin ⁡ ( θ ) z=r\cos(\theta)+ir\sin(\theta) z=rcos(θ)+irsin(θ),由欧拉等式, z = r e i θ z=re^{i\theta} z=reiθ

e i θ e^{i\theta} eiθ 关于 θ \theta θ 是周期的,且周期为 2 π 2\pi 2π 例如: e i ( 3 π 2 ) = e i ( − π 2 ) e^{i(\frac{3\pi}{2})}=e^{i(-\frac{\pi}{2})} ei(23π)=ei(2π)

28.2.1 复数的笛卡尔形式和极坐标形式互换


复数 z z z 的极坐标形式也被称为模-辐角式
复数的模 ∣ z ∣ = ∣ x + y i ∣ = x 2 + y 2 |z|=|x+yi|=\sqrt{x^2+y^2} z=x+yi=x2+y2
θ \theta θ 称为 z z z 的辅角,写为 a r g ( z ) arg(z) arg(z) 0 ≤ a r g ( z ) < 2 π 0\leq arg(z) \lt 2\pi 0arg(z)<2π


例1:

例2:

28.3 复数的高次幂

为什么要用极坐标形式??
极坐标形式比较容易进行乘法和取幂运算

若取复数的高次幂,步骤如下:
1.将复数转为极坐标形式
2.取幂
3.求小于 θ \theta θ π \pi π 的最大偶数倍,从 θ \theta θ 中减去这个偶数倍,且用所得新数来代换 θ \theta θ
4.换回笛卡尔形式

28.4 解 z n = w z^n=w zn=w(有限个解)

给定 w w w 求解 z z z

例1:

例2:

例3:

例4:

28.5 解 e z = w e^z=w ez=w(有无穷多个解)

给定 w w w 求解 z z z

28.6 三角级数


例子:

28.7 欧拉恒等式的推导

好的,以下是一个简单的ComplexNumber类的代码示例: ```python class ComplexNumber: def __init__(self, real_part, imaginary_part): self.real_part = real_part self.imaginary_part = imaginary_part def add(self, other): real = self.real_part + other.real_part imaginary = self.imaginary_part + other.imaginary_part return ComplexNumber(real, imaginary) def subtract(self, other): real = self.real_part - other.real_part imaginary = self.imaginary_part - other.imaginary_part return ComplexNumber(real, imaginary) def multiply(self, other): real = self.real_part * other.real_part - self.imaginary_part * other.imaginary_part imaginary = self.real_part * other.imaginary_part + self.imaginary_part * other.real_part return ComplexNumber(real, imaginary) def divide(self, other): denominator = other.real_part**2 + other.imaginary_part**2 real = (self.real_part * other.real_part + self.imaginary_part * other.imaginary_part) / denominator imaginary = (self.imaginary_part * other.real_part - self.real_part * other.imaginary_part) / denominator return ComplexNumber(real, imaginary) def __str__(self): if self.imaginary_part >= 0: return f"{self.real_part} + {self.imaginary_part}i" else: return f"{self.real_part} - {-self.imaginary_part}i" ``` 这个ComplexNumber类可以用来表示复数,并支持加、减、乘、除四种运算。其中,add()、subtract()、multiply()、divide() 方法分别用于实现复数的加、减、乘、除运算。__str__() 方法用于将复数格式化为字符串输出。当然,这个类还可以根据需要进行扩展,例如添加取模、共轭等方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Uncertainty!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值