Chapter28:复数
28.复数
28.1 基础
一个数是虚数,意思是它的平方是一个负数
i
0
、
i
1
、
i
2
、
i
3
、
i
4
⋯
1
、
i
、
−
1
、
−
i
、
1
⋯
i^0、i^1、i^2、i^3、i^4 \cdots\\ ~\\ 1、i、-1、-i、1\cdots
i0、i1、i2、i3、i4⋯ 1、i、−1、−i、1⋯
四个(
1
、
i
、
−
1
、
−
i
1、i、-1、-i
1、i、−1、−i)为一个周期
复数
z
=
x
+
y
i
z=x+yi
z=x+yi
实部
R
e
(
z
)
=
x
Re(z)=x
Re(z)=x
虚部
I
m
(
z
)
=
y
Im(z)=y
Im(z)=y
复数
z
=
x
+
y
i
z=x+yi
z=x+yi 的共轭复数
z
ˉ
=
x
−
y
i
\bar{z}=x-yi
zˉ=x−yi
复数
z
=
x
+
y
i
z=x+yi
z=x+yi 的模
∣
z
∣
=
∣
x
+
y
i
∣
=
x
2
+
y
2
|z|=|x+yi|=\sqrt{x^2+y^2}
∣z∣=∣x+yi∣=x2+y2
z z ˉ = ( a + b i ) ( a − b i ) = a 2 − a b i + a b i − b 2 i 2 = a 2 + b 2 = ∣ z ∣ 2 z\bar{z}=(a+bi)(a-bi)=a^2-abi+abi-b^2i^2=a^2+b^2=|z|^2 zzˉ=(a+bi)(a−bi)=a2−abi+abi−b2i2=a2+b2=∣z∣2
复指数函数
e
z
=
∑
n
=
0
∞
z
n
n
!
(
其中
z
=
x
+
y
i
)
e^z=\sum_{n=0}^{\infty}\frac{z^n}{n!}\quad ( 其中z=x+yi )
ez=n=0∑∞n!zn(其中z=x+yi)
e
z
e
w
=
e
z
+
w
e^ze^w=e^{z+w}
ezew=ez+w
28.2 复平面
将每个点看作一个复数,而不是一对实数
笛卡尔坐标系中点
(
x
,
y
)
(x,y)
(x,y) 在复平面中用一个复数
z
=
x
+
i
y
z=x+iy
z=x+iy 表示
复平面内极坐标为
(
r
,
θ
)
(r,\theta)
(r,θ) 的点表示的复数是什么?
对于不在单位圆上的点,只需乘以
r
r
r
如果 z z z 由极坐标系下的点 ( r , θ ) (r,\theta) (r,θ) 表示,则 z = r cos ( θ ) + i r sin ( θ ) z=r\cos(\theta)+ir\sin(\theta) z=rcos(θ)+irsin(θ),由欧拉等式, z = r e i θ z=re^{i\theta} z=reiθ
e i θ e^{i\theta} eiθ 关于 θ \theta θ 是周期的,且周期为 2 π 2\pi 2π 例如: e i ( 3 π 2 ) = e i ( − π 2 ) e^{i(\frac{3\pi}{2})}=e^{i(-\frac{\pi}{2})} ei(23π)=ei(−2π)
28.2.1 复数的笛卡尔形式和极坐标形式互换
复数
z
z
z 的极坐标形式也被称为模-辐角式
复数的模
∣
z
∣
=
∣
x
+
y
i
∣
=
x
2
+
y
2
|z|=|x+yi|=\sqrt{x^2+y^2}
∣z∣=∣x+yi∣=x2+y2
角
θ
\theta
θ 称为
z
z
z 的辅角,写为
a
r
g
(
z
)
arg(z)
arg(z)【
0
≤
a
r
g
(
z
)
<
2
π
0\leq arg(z) \lt 2\pi
0≤arg(z)<2π】
例1:
例2:
28.3 复数的高次幂
为什么要用极坐标形式??
极坐标形式比较容易进行乘法和取幂运算
若取复数的高次幂,步骤如下:
1.将复数转为极坐标形式
2.取幂
3.求小于
θ
\theta
θ 的
π
\pi
π 的最大偶数倍,从
θ
\theta
θ 中减去这个偶数倍,且用所得新数来代换
θ
\theta
θ
4.换回笛卡尔形式
28.4 解 z n = w z^n=w zn=w(有限个解)
给定 w w w 求解 z z z
例1:
例2:
例3:
例4:
28.5 解 e z = w e^z=w ez=w(有无穷多个解)
给定
w
w
w 求解
z
z
z
28.6 三角级数
例子: