1.计算二阶矩阵特征值的技巧
笔记来源:计算二阶矩阵特征值的妙计
1.1 平均特征值
1.2 特征值的积
1.3 求解特征值
根据以上两点,求出特征值
m m m 为平均特征值 λ 1 + λ 2 2 \frac{\lambda_1+\lambda_2}{2} 2λ1+λ2(两个特征值 λ 1 、 λ 2 \lambda_1、\lambda_2 λ1、λ2 关于平均特征值中心对称)
p p p 为两个特征值 λ 1 、 λ 2 \lambda_1、\lambda_2 λ1、λ2 的积( m − d m-d m−d 为 λ 1 \lambda_1 λ1、 m + d m+d m+d 为 λ 2 \lambda_2 λ2)
− m 2 − p -\sqrt{m^2-p} −m2−p 为平均特征值和第一个特征值 λ 1 \lambda_1 λ1 间的距离
+ m 2 − p +\sqrt{m^2-p} +m2−p 为平均特征值和第二个特征值 λ 2 \lambda_2 λ2 间的距离
例子:
1.4 泡利矩阵
三个 x , y , z x,y,z x,y,z 分方向的旋转
三个 x , y , z x,y,z x,y,z 分方向的旋转综合得到一个旋转效果
原先我们需要经过两个步骤才能求解得到特征值
经过本篇的技巧,我们直接跳过求特征多项式这一步,直接由二阶矩阵求得特征值