目前几种商业化图谱
数字时代的算法困境
首先是人类的认知局限
算法是人类开发设计的,必然也反映着人类的主观认知。算法困境的很重要原因是人类主观认知的局限性造成的。
其一,开发算法的人员可能会存在认知上的偏差甚至偏见,而算法不仅会继承人类的偏见,而且还可能随着数据的积累和算法的迭代而被强化和放大;其二大数据、人工智能以及作为其核心的算法仍然是一个新生事物,人类对于其可能造成的负面影响存在认识不足的情况。
其次是企业的经济动因
算法虽然在客观构成上是一系列冰冷的代码,但它仍然是人类智力活动的结果,算法既受到人类认知发展水平的制约,也不可避免受到人类主观行为的影响。企业是追求经济利益最大化的市场主体,企业对算法功能的开发、设计必然服务于其经济目标的实现。
为了让数据创造更大价值,企业会以各种方式获得用户数据;为了获得流量,企业会根据数据对用户精准画像并进行定制化的信息推送。带有偏见和歧视的数据经过算法运算之后产生的结果也会带有不公平性。
再次是平台的数据优势
超级平台是供应商和商品/服务最终用户的交易中介,掌握着双方的搜索、评论、互动、收藏、交易等各种数据,而且在大数据、云计算等技术的支持下,所有的历史交易都能被保存、追溯