yolov5-5.0版本(目前最新)网络结构图

新入坑CV,看到大白老师去年做的图https://blog.csdn.net/nan355655600/article/details/107852353不知道是那个版本的yolov5了,自己在读代码时发现有些许不一样的地方,因此针对yolov5-5.0版本对他的图进行了调整

先上原图:
在这里插入图片描述
然后是我根据yolov5-5.0的代码做了修改:
在这里插入图片描述
由于是新入坑,难免有理解不当导致谬误的地方,如果各位大佬发现后能告知,定当感激不尽!

### YOLOv5 网络架构图解析 YOLOv5 是一种高效的实时目标检测算法,其网络结构采用了模块化设计[^2]。以下是对其网络架构的具体分析: #### 1. **Backbone(主干网络)** 主干网络负责提取输入图像的特征。YOLOv5 的 Backbone 部分基于 CSPNet(Cross Stage Partial Network),这种设计可以显著减少计算量并提高性能。CSPNet 将特征图分为两个分支,在其中一个分支上应用卷积操作后再与另一个分支拼接,从而减少了内存消耗和梯度消失问题。 在具体实现中,YOLOv5 提供了多种不同大小的模型变体,如 YOLOv5s、YOLOv5m、YOLOv5l 和 YOLOv5x,这些模型的主要区别在于网络深度和宽度的不同配置[^1]。 #### 2. **Neck(颈部网络)** 颈部网络的作用是对 Backbone 输出的多尺度特征进行融合处理。YOLOv5 使用了 FPN(Feature Pyramid Network)加 PANet(Path Aggregation Network)的设计思路。FPN 负责自顶向下的特征金字塔构建,而 PANet 则通过自底向上的路径增强低层特征的信息传递能力。这样的组合使得模型能够更好地捕捉到不同尺寸的目标对象。 #### 3. **Head(头部网络)** 头部网络用于预测最终的结果,包括边界框的位置、类别概率以及置信度得分。对于每个像素位置,YOLOv5 设计了一个固定数量的锚点框来表示可能存在的物体候选区域,并利用回归方法调整这些预定义框以匹配实际目标。此外,为了进一步提升定位准确性,还引入了 CIoU Loss 函数作为优化目标的一部分。 ```python import torch from models.yolo import Model # 加载 YOLOv5 模型配置文件 model = Model(cfg='models/yolov5s.yaml', ch=3, nc=80) # 打印模型结构概览 print(model) ``` 上述代码片段展示了如何加载 YOLOv5s 的默认配置并打印出整个神经网络的层次结构信息。这有助于理解各个组件之间的连接关系及其参数规模分布情况。 --- ###
评论 25
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

昼行plus

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值