集成学习__机器学习基础之回归

1.导论

机器学习任务分为有监督学习和无监督学习。其中有监督学习是给定某些特征去估计变量,因变量存在。无监督学习是给定某些delattr征但不给定因变量

根据因变量的是否连续,有监督学习又分为回归和分类:

  • 回归:因变量是连续型变量,如:房价,体重等。
  • 分类:因变量是离散型变量,如:是否患癌症,西瓜是好瓜还是坏瓜等。

为了更好地叙述后面的内容,我们对数据的形式作出如下约定:
第i个样本: x i = ( x i 1 , x i 2 , . . . , x i p , y i ) T , i = 1 , 2 , . . . , N x_i=(x_{i1},x_{i2},...,x_{ip},y_i)^T,i=1,2,...,N xi=(xi1,xi2,...,xip,yi)T,i=1,2,...,N
因变量 y = ( y 1 , y 2 , . . . , y N ) T y=(y_1,y_2,...,y_N)^T y=(y1,y2,...,yN)T
第k个特征: x ( k ) = ( x 1 k , x 2 k , . . . , x N k ) T x^{(k)}=(x_{1k},x_{2k},...,x_{Nk})^T x(k)=(x1k,x2k,...,xNk)T
特征矩阵 X = ( x 1 , x 2 , . . . , x N ) T X=(x_1,x_2,...,x_N)^T X=(x1,x2,...,xN)T

在学习机器学习中,我们经常使用scikit-learn简称sklearn工具库来探索机器学习项目,下面我们开始使用sklearn来演示这几个具体的概念:

# 引入相关科学计算包
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline 
plt.style.use("ggplot")      
import seaborn as sns

1.1回归

首先,我们先来看看有监督学习中回归的例子,我们使用sklearn内置数据集Boston房价数据集。sklearn中所有内置数据集都封装在datasets对象内:
返回的对象有:

  • data:特征X的矩阵(ndarray)
  • target:因变量的向量(ndarray)
  • feature_names:特征名称(ndarray)
from sklearn import datasets
boston  = datasets.load_boston()
X = boston.data
y = boston.target
features = boston.feature_names
boston_data = pd.DataFrame(X,columns= features)
boston_data['price'] = y
boston_data.head()
CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT price
0 0.00632 18.0 2.31 0.0 0.538 6.575 65.2 4.0900 1.0 296.0 15.3 396.90 4.98 24.0
1 0.02731 0.0 7.07 0.0 0.469 6.421 78.9 4.9671 2.0 242.0 17.8 396.90 9.14 21.6
2 0.02729 0.0 7.07 0.0 0.469 7.185 61.1 4.9671 2.0 242.0 17.8 392.83 4.03 34.7
3 0.03237 0.0 2.18 0.0 0.458 6.998 45.8 6.0622 3.0 222.0 18.7 394.63 2.94 33.4
4 0.06905 0.0 2.18 0.0 0.458 7.147 54.2 6.0622 3.0 222.0 18.7 396.90 5.33 36.2
sns.scatterplot(boston_data['NOX'],boston_data['price'],color="r",alpha=0.6)
plt.title('Price~Nox')
plt.show()

在这里插入图片描述

各个特征的相关解释:

  • CRIM:各城镇的人均犯罪率
  • ZN:规划地段超过25,000平方英尺的住宅用地比例
  • INDUS:城镇非零售商业用地比例
  • CHAS:是否在查尔斯河边(=1是)
  • NOX:一氧化氮浓度(/千万分之一)
  • RM:每个住宅的平均房间数
  • AGE:1940年以前建造的自住房屋的比例
  • DIS:到波士顿五个就业中心的加权距离
  • RAD:放射状公路的可达性指数
  • TAX:全部价值的房产税率(每1万美元)
  • PTRATIO:按城镇分配的学生与教师比例
  • B:1000(Bk - 0.63)^2其中Bk是每个城镇的黑人比例
  • LSTAT:较低地位人口
  • Price:房价

1.2 分类

我们来看看一个分类的例子,我们来看看大名鼎鼎的iris数据集:

from sklearn import datasets
iris = datasets.load_iris()
X = iris.data
y = iris.target
features = iris.feature_names
iris_data = pd.DataFrame(X, columns=features)
iris_data['target'] =y
iris_data.head()
sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) target
0 5.1 3.5 1.4 0.2 0
1 4.9 3.0 1.4 0.2 0
2 4.7 3.2 1.3 0.2 0
3 4.6 3.1 1.5 0.2 0
4 5.0 3.6 1.4 0.2 0
# 可视化特征
marker = ['s','x','o']
for index,c in enumerate(np.unique(y)):
    plt.scatter(x=iris_data.loc[y==c,"sepal length (cm)"],y=iris_data.loc[y==c,"sepal width (cm)"],alpha=0.8,label=c,marker=marker[c])
plt.xlabel("sepal length (cm)")
plt.ylabel("sepal width (cm)")
plt.legend()
plt.show()

在这里插入图片描述

我们可以看到:每种不同的颜色和点的样式为一种类型的鸢尾花,数据集有三种不同类型的鸢尾花。因此因变量是一个类别变量,因此通过特征预测鸢尾花类别的问题是一个分类问题。

各个特征的相关解释:

  • sepal length (cm):花萼长度(厘米)
  • sepal width (cm):花萼宽度(厘米)
  • petal length (cm):花瓣长度(厘米)
  • petal width (cm):花瓣宽度(厘米)

1.3 无监督学习

我们可以使用sklearn生成符合自身需求的数据集,下面我们用其中几个函数例子来生成无因变量的数据集:
https://scikit-learn.org/stable/modules/classes.html?highlight=datasets#module-sklearn.datasets

# 生成月牙型非凸集
from sklearn import datasets
x,y = datasets.make_moons(n_samples = 2000, shuffle = True, noise = 0.05, random_state = None)
for index,c in enumerate(np.unique(y)):
    plt.scatter(x[y==c,0],x[y==c,1],s = 7)
plt.show()

在这里插入图片描述

# 生成符合正太分布数据的聚类数据
from sklearn import datasets
x,y = datasets.make_blobs(n_samples = 5000, n_features = 2,centers=3)
for index, c in enumerate(np.unique(y)):
    plt.scatter(x[y==c,0],x[y==c,1],s = 7)
plt.show()

在这里插入图片描述

2. 使用sklearn构建完整的机器学习项目流程

一般来说,一个完整的机器学习项目分为以下步骤:

  • 明确项目任务:回归/分类
  • 收集数据集并选择合适的特征。
  • 选择度量模型性能的指标。
  • 选择具体的模型并进行训练以优化模型。
  • 评估模型的性能并调参。

2.1 使用sklearn构建完整的回归项目

在数据集上我们使用我们比较熟悉的Boston房价数据集

from sklearn import datasets
boston = datasets.load_boston()
X = boston.data
y = boston.target
features = boston.feature_names
boston_data = pd.DataFrame(X,columns=features)
boston_data['price'] = y
boston_data.head()
CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT price
0 0.00632 18.0 2.31 0.0 0.538 6.575 65.2 4.0900 1.0 296.0 15.3 396.90 4.98 24.0
1 0.02731 0.0 7.07 0.0 0.469 6.421 78.9 4.9671 2.0 242.0 17.8 396.90 9.14 21.6
2 0.02729 0.0 7.07 0.0 0.469 7.185 61.1 4.9671 2.0 242.0 17.8 392.83 4.03 34.7
3 0.03237 0.0 2.18 0.0 0.458 6.998 45.8 6.0622 3.0 222.0 18.7 394.63 2.94 33.4
4 0.06905 0.0 2.18 0.0 0.458 7.147 54.2 6.0622 3.0 222.0 18.7 396.90 5.33 36.2

各个特征的相关解释:

  • CRIM:各城镇的人均犯罪率
  • ZN:规划地段超过25,000平方英尺的住宅用地比例
  • INDUS:城镇非零售商业用地比例
  • CHAS:是否在查尔斯河边(=1是)
  • NOX:一氧化氮浓度(/千万分之一)
  • RM:每个住宅的平均房间数
  • AGE:1940年以前建造的自住房屋的比例
  • DIS:到波士顿五个就业中心的加权距离
  • RAD:放射状公路的可达性指数
  • TAX:全部价值的房产税率(每1万美元)
  • PTRATIO:按城镇分配的学生与教师比例
  • B:1000(Bk - 0.63)^2其中Bk是每个城镇的黑人比例
  • LSTAT:较低地位人口
  • Price:房价

(2) 选择度量模型性能的指标:

  • MSE均方误差: MSE ( y , y ^ ) = 1 n samples ∑ i = 0 n samples − 1 ( y i − y ^ i ) 2 . \text{MSE}(y, \hat{y}) = \frac{1}{n_\text{samples}} \sum_{i=0}^{n_\text{samples} - 1} (y_i - \hat{y}_i)^2. MSE(y,y^)=nsamples1i=0nsamples1(yiy^i)2.
  • MAE平均绝对误差: MAE ( y , y ^ ) = 1 n samples ∑ i = 0 n samples − 1 ∣ y i − y ^ i ∣ \text{MAE}(y, \hat{y}) = \frac{1}{n_{\text{samples}}} \sum_{i=0}^{n_{\text{samples}}-1} \left| y_i - \hat{y}_i \right| MAE(y,y^)=nsamples1i=0nsamples1yiy^i
  • R 2 R^2 R2决定系数: R 2 ( y , y ^ ) = 1 − ∑ i = 1 n ( y i − y ^ i ) 2 ∑ i = 1 n ( y i − y ˉ ) 2 R^2(y, \hat{y}) = 1 - \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2} R2(y,y^)=1i=1n(yiyˉ)2i=1n(yiy^i)2
  • 解释方差得分: e x p l a i n e d _ v a r i a n c e ( y , y ^ ) = 1 − V a r { y − y ^ } V a r { y } explained\_{}variance(y, \hat{y}) = 1 - \frac{Var\{ y - \hat{y}\}}{Var\{y\}} explained_variance(y,y^)=1Var{ y}Var{ yy^}

https://scikit-learn.org/stable/modules/model_evaluation.html#regression-metrics

在这个案例中,我们使用MSE均方误差为模型的性能度量指标。

(3) 选择具体的模型并进行训练

  • 线性回归模型
    回归这个概念是19世纪80年代由英国统计学家郎西斯.高尔顿在研究父子身高关系提出来的,他发现:在同一族群中,子代的平均身高介于父代的身高以及族群的平均身高之间。具体而言,高个子父亲的儿子的身高有低于其父亲身高的趋势,而矮个子父亲的儿子身高则有高于父亲的身高的趋势。也就是说,子代的身高有向族群平均身高"平均"的趋势,这就是统计学上"回归"的最初含义。回归分析是一种预测性的建模技术,它研究的是因变量(目标)和自变量(特征)之间的关系。这种技术通常用于预测分析,时间序列模型以及发现变量之间的因果关系。通常使用曲线/线来拟合数据点,目标是使曲线到数据点的距离差异最小。而线性回归就是回归问题中的一种,线性回归假设目标值与特征之间线性相关,即满足一个多元一次方程。通过构建损失函数,来求解损失函数最小时的参数w :
    假设:数据集 D = { ( x 1 , y 1 ) , . . . , ( x N , y N ) } D = \{(x_1,y_1),...,(x_N,y_N) \} D={ (x1,y1),...,(xN,yN)} x i ∈ R p , y i ∈ R , i = 1 , 2 , . . . , N x_i \in R^p,y_i \in R,i = 1,2,...,N xiRp,yiR,i=1,2,...,N X = ( x 1 , x 2 , . . . , x N ) T , Y = ( y 1 , y 2 , . . . , y N ) T X = (x_1,x_2,...,x_N)^T,Y=(y_1,y_2,...,y_N)^T X=(x1,x2,...,xN)T,Y=(y1,y2,...,yN)T
    假设X和Y之间存在线性关系,模型的具体形式为 y ^ = f ( w ) = w T x \hat{y}=f(w) =w^Tx y^=f(w)=wTx
    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-EadUF6XG-1616080762325)(attachment:image-2.png)]
    (a) 最小二乘估计:
    我们需要衡量真实值 y i y_i yi与线性回归模型的预测值 w T x i w^Tx_i wTxi之间的差距,在这里我们和使用二范数的平方和L(w)来描述这种差距,即:
    L ( w ) = ∑ i = 1 N ∣ ∣ w T x i − y i ∣ ∣ 2 2 = ∑ i = 1 N ( w T x i − y i ) 2 = ( w T X T − Y T ) ( w T X T − Y T ) T = w T X T X w − 2 w T X T Y + Y Y T 因 此 , 我 们 需 要 找 到 使 得 L ( w ) 最 小 时 对 应 的 参 数 w , 即 : w ^ = a r g m i n    L ( w ) 为 了 达 到 求 解 最 小 化 L ( w ) 问 题 , 我 们 应 用 高 等 数 学 的 知 识 , 使 用 求 导 来 解 决 这 个 问 题 : ∂ L ( w ) ∂ w = 2 X T X w − 2 X T Y = 0 , 因 此 : w ^ = ( X T X ) − 1 X T Y L(w) = \sum\limits_{i=1}^{N}||w^Tx_i-y_i||_2^2=\sum\limits_{i=1}^{N}(w^Tx_i-y_i)^2 = (w^TX^T-Y^T)(w^TX^T-Y^T)^T = w^TX^TXw - 2w^TX^TY+YY^T\\ 因此,我们需要找到使得L(w)最小时对应的参数w,即:\\ \hat{w} = argmin\;L(w)\\ 为了达到求解最小化L(w)问题,我们应用高等数学的知识,使用求导来解决这个问题: \\ \frac{\partial L(w)}{\partial w} = 2X^TXw-2X^TY = 0,因此: \\ \hat{w} = (X^TX)^{-1}X^TY L(w)=i=1N
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值