比LSTM更强-时间卷积融合注意力机制(TCN-Attention)预测程序代码!包含特征可视化,由Excel导入,直接运行!

TCN-Attention是一种将Temporal Convolutional Network(TCN)与自注意力机制结合的深度学习架构,用于处理时间序列数据;适用平台:Matlab 2023及以上。以下是TCN-Attention的基本结构:

TCN层:TCN层是TCN-Attention的核心组件,用于处理时间序列数据。它通常由多个残差块(Residual Blocks)组成,每个块包括卷积层、层归一化(Layer Normalization)和激活函数(通常是ReLU)。

Attention注意力层:在TCN-Attention中,自注意力层被嵌入到TCN层中,通常位于最上面的残差块。这个自注意力层用于捕捉时间序列数据中的全局依赖关系。自注意力机制允许网络在学习时动态地调整各个时间步的权重,以便更好地捕捉长期依赖和全局模式。

残差连接:残差连接用于构建深层网络。每个残差块包括了一维卷积层和层归一化层,这些卷积层的输出被添加到输入,从而构成了残差结构。这有助于减轻梯度消失问题并使网络更容易训练。

全连接层:在TCN-Attention的顶部,通常添加全连接层用于执行最终的任务特定预测,如时间序列预测、文本分类等。

TCN-Attention结合了TCN的局部特征捕获和自注意力机制的全局特征捕获,以提高时间序列建模的性能。这种结构允许网络在学习时既关注局部模式又能够有效地捕获时间序列数据中的长期依赖和全局模式。TCN-Attention的结构可以根据特定任务和数据集进行调整和优化,以获得最佳性能。

适用于,风速预测,光伏功率预测,发电功率预测,海上风电预测,碳价预测等等。它的创新点在于综合了膨胀因果卷积,使其适用于广泛的应用,从而提高了对序列数据的建模和分析能力。

程序出图:

特征可视化:

超前24步预测值与实际值对比:

部分程序:

%% 清除内存、清除屏幕
clc
clear

%% 导入特征数据、当天的风速数据
data = xlsread('特征序列及实际值.xlsx');
Features   = data(1:18,:);                             %% 特征输入  :75天,每天24小时,每小时一个采样点,共计75*24=1800小时,18个特征数据
Wind_data  = data(19,:);                               %% 实际值输出:75天,每天24小时,每小时一个采样点,共计75*24=1800小时的风速数据

%%  数据平铺为4-D
LP_Features =  double(reshape(Features,18,24,1,75));   %% 特征数据格式为18*24*1*75,分别对应18特征24小时,75天
LP_WindData  = double(reshape(Wind_data,1,24,1,75));   %% 实际数据格式为1*24*1*75 ,分别对应24小时,75天

%% 格式转换为cell
NumDays  = 75;                                         %% 数据总天数为 75天
for i=1:NumDays
    FeaturesData{1,i} = LP_Features(:,:,1,i);
end

for i=1:NumDays
    RealData{1,i} = LP_WindData(:,:,1,i);
end

%% 划分数据
XTrain = FeaturesData(:,1:73);                         %% 训练集输入为 1-73   天的特征
YTrain = RealData(:,2:74);                             %% 训练集输出为 2-74天 的实际值                

XTest  = cell2mat(FeaturesData(: , 74));               %% 测试集输入第  74    天的特征
Ytest  = cell2mat(RealData(: , 75));                   %% 测试集输出为第 75天 的实际值

%% 设置网络参数 
numFilters = 16;         % 卷积核个数
filterSize = 3;          % 卷积核大小
dropoutFactor = 0.05;    % 空间丢失因子
numBlocks = 2;           % 残差块个数
numFeatures = 18;        % 特征个数

欢迎感兴趣的小伙伴关注并获取完整版代码哦~,小编会继续推送更有质量的学习资料、文章程序代码~

  • 2
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 使用卷积神经网络-长短期记忆网络(bi-lstm)-注意力机制对股票收盘价进行回归预测是一种基于深度学习的方法。该方法主要通过多层卷积神经网络提取输入数据的特征,并使用双向的长短期记忆网络来学习数据的时序信息,并通过注意力机制来自动选择对预测结果具有重要贡献的部分。 首先,卷积神经网络可以有效提取输入数据的空间特征,这对于股票收盘价预测来说很关键,因为股票市场的价格变化通常具有一定的空间相关性。通过多层卷积网络的前向传播和反向传播过程,模型可以从原始数据中提取出具有预测意义的低维特征表示。 其次,双向的长短期记忆网络可以帮助我们学习到时序信息。在股票市场中,过去一段时间的价格变动通常能够为未来提供一定的指引。LSTM网络在处理时序数据时具有优势,能够自动学习到长期依赖关系。通过双向LSTM网络结构,我们可以同时考虑历史信息和未来信息,更好地捕捉到股票价格的动态变化。 最后,注意力机制被引入用于选择对预测结果贡献最重要的部分。在股票市场中,不同的特征可能对价格的预测具有不同的重要性。通过引入注意力机制,我们可以自动学习到不同时间点或特征预测中的贡献程度,并将更多的关注点放在对预测结果具有更大影响的部分上。 综上所述,使用卷积神经网络-长短期记忆网络(bi-lstm)-注意力机制对股票收盘价进行回归预测是一种较为有效的方法。该方法可以利用卷积网络提取空间特征LSTM网络学习时序信息,并通过注意力机制选择重要特征,从而提高对股票收盘价的预测准确性。这种方法不仅可以应用于股票市场,还可以扩展到其他时序预测问题中。 ### 回答2: 在对股票收盘价进行回归预测时,可以采用卷积神经网络(Convolutional Neural Network, CNN)结合长短期记忆网络(Bidirectional Long Short-Term Memory, bi-LSTM)和注意力机制的方法。 首先,通过卷积神经网络对股票数据进行特征提取。卷积层可以提取出时间序列数据中的局部模式和趋势,并且具有平移不变性,能够保留数据的空间结构信息。卷积层的输出经过池化操作,进一步减少参数数量,并提取出更加重要的特征。 接下来,通过双向LSTM模型对经过卷积特征提取的序列数据进行处理。LSTM模型可以捕捉到序列数据中的长期依赖关系,并能够记忆之前的状态,相比传统的循环神经网络效果更好。通过双向LSTM,可以同时考虑到当前数据点前后的信息,提升模型对时间序列数据的理解能力。 最后,引入注意力机制来加权模型对各个时间步的关注程度。注意力机制可以根据每个时间步的重要性,给予不同的权重。对于股票收盘价的回归预测,模型可以更加关注重要的时间步,提高预测的准确性。 整个模型的训练过程包括特征提取、双向LSTM注意力机制的训练。在训练过程中,可以采用均方误差(Mean Squared Error, MSE)作为损失函数,通过梯度下降算法进行参数优化。 最后,在进行股票收盘价的预测时,可以将历史数据输入到模型中,根据模型输出的预测结果进行回归预测。通过不断的迭代优化,可以提高模型对股票收盘价的准确预测能力。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值