NumPy科学计算库
1.多维数组
在机器学习中,需要把输入数据转变为多维数组的形式
数组的形状(Shape):
描述数组的维度,以及各个维度内部的元素个数。
小结:
形状(Shape):
是一个元组,描述数组的维度,以及各个维度的长度。
长度(Length):
某个维度中的元素个数。
2.创建NumPy数组
①提供了多维数组、矩阵的常用操作和一些高效的科学计算函数
②底层运算通过C语言实现,处理速度快、效率高,适用于大规模多维数组
③可以直接完成数组和矩阵运算,无需循环
2.1导入NumPy库
一般建议使用第一种
2.2创建数组
数组的属性
2.3数组元素的数据类型
NumPy要求数组中所有元素的数据类型必须是一致的
2.4创建特殊的数组
arange()函数:创建一个由数字序列构成的数组
ones()函数:创建一个元素全部为1的数组
zeros()函数:创建一个元素全部为0的数组
eye()函数:创建一个单位矩阵
linspace()函数:创建等差数列
logspace()函数:创建一个等比数列
2.5 asarray()函数
将列表或元组转化为数组对象
3.数组运算
3.1数组元素的切片
可以使用切片来访问NumPy数组中的一部分,切片方法和Python序列数据结构的切片一样
一维数组
二维数组
三维数组
3.2改变数组的形状
当改变形状时,应该考虑到数组中元素的个数,确保改变前后,元素总个数相等
3.3数组元素间的运算
轴(axes):数组中的每一个维度被称为一个轴
秩(rank):轴的个数
3.4数组堆叠
4.矩阵和随机数
4.1矩阵
numpy.matrix
矩阵对象的属性
矩阵相乘*
矩阵转置 T
矩阵求逆.I
矩阵与二维数组相比,二维数组更加灵活、速度更快
4.2随机数模块
numpy.random
seed()函数:设置随机种子
shuffle():打乱顺序函数