神经网络与深度学习:NumPy科学计算库

1.多维数组

在机器学习中,需要把输入数据转变为多维数组的形式
在这里插入图片描述
数组的形状(Shape):
描述数组的维度,以及各个维度内部的元素个数。
在这里插入图片描述
小结
形状(Shape):
是一个元组,描述数组的维度,以及各个维度的长度。
长度(Length):
某个维度中的元素个数。
在这里插入图片描述

2.创建NumPy数组

①提供了多维数组、矩阵的常用操作和一些高效的科学计算函数
②底层运算通过C语言实现,处理速度快、效率高,适用于大规模多维数组
③可以直接完成数组和矩阵运算,无需循环

2.1导入NumPy库

在这里插入图片描述
一般建议使用第一种

2.2创建数组

在这里插入图片描述
在这里插入图片描述

数组的属性
在这里插入图片描述

2.3数组元素的数据类型

NumPy要求数组中所有元素的数据类型必须是一致的
在这里插入图片描述
在这里插入图片描述

2.4创建特殊的数组

在这里插入图片描述

arange()函数:创建一个由数字序列构成的数组
在这里插入图片描述

ones()函数:创建一个元素全部为1的数组
在这里插入图片描述

zeros()函数:创建一个元素全部为0的数组
在这里插入图片描述

eye()函数:创建一个单位矩阵
在这里插入图片描述

linspace()函数:创建等差数列
在这里插入图片描述

logspace()函数:创建一个等比数列
在这里插入图片描述

2.5 asarray()函数

将列表或元组转化为数组对象
在这里插入图片描述
在这里插入图片描述

3.数组运算

3.1数组元素的切片

可以使用切片来访问NumPy数组中的一部分,切片方法和Python序列数据结构的切片一样

一维数组
在这里插入图片描述
二维数组
在这里插入图片描述
三维数组
在这里插入图片描述

3.2改变数组的形状

在这里插入图片描述
当改变形状时,应该考虑到数组中元素的个数,确保改变前后,元素总个数相等

3.3数组元素间的运算

在这里插入图片描述

轴(axes):数组中的每一个维度被称为一个轴
秩(rank):轴的个数
在这里插入图片描述
在这里插入图片描述

3.4数组堆叠

在这里插入图片描述
在这里插入图片描述

4.矩阵和随机数

4.1矩阵

numpy.matrix
在这里插入图片描述

矩阵对象的属性
在这里插入图片描述
矩阵相乘*
矩阵转置 T
矩阵求逆.I
在这里插入图片描述
矩阵与二维数组相比,二维数组更加灵活、速度更快

4.2随机数模块

numpy.random
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

seed()函数:设置随机种子
shuffle():打乱顺序函数
在这里插入图片描述

三级目录

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值