Carla自动驾驶模拟器快捷键指令

这篇内容详细解析了游戏控制器的各种指令,包括WASD的移动控制、Q和E的倒车、转向,以及Space的手刹和P的自动驾驶切换。还介绍了灯光、雷达、天气变化和车辆选择等模拟驾驶中的关键操作。此外,讨论了如何使用CTRL+R进行模拟记录,并通过CTRL+P回放录制的驾驶视频。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    W            : 前进
    S            : 刹车(不会后退)
    A/D          : 左/右转向
    Q            : 倒车
    Space        : 手刹
    P            : 切换自动驾驶
    M            : 切换手动变速
    ,/.          : 加/减档
    CTRL + W     :60 km/h 时启用定速巡航

    L            : 切换下一种灯光
    SHIFT + L    : 切换远光灯
    Z/X          : 切换右/左闪光灯
    I            : 切换车内灯

    TAB          : 更改传感器位置
    ` or N       : 下一个传感器
    [1-9]        : 更改为传感器 [1-9]
    G            : radar可视化
    C            : 改变天气 (Shift+C 返回)
    Backspace    : 更换一台车

    O            : 打开/关闭所有车门
    T            : 切换车辆遥测

    V            : 选择下一个map layer (Shift+V 返回)
    B            :  加载当前选中的图层 (Shift+B 退出加载/卸载)

    R            : 记录采集到的图片文件到磁盘

    CTRL + R     : 切换模拟记录(替换以前的)
    CTRL + P     : 开始回放上次录制的模拟视频
    CTRL + +     : 将回放的开始时间增加 1(+SHIFT = 10s)
    CTRL + -     : 将回放的开始时间减少 1(+SHIFT = 10s)

    F1           : 切换HUD(Head-up-Display抬头显示器)
    H/?          : 打开“帮助”
    ESC          : 退出
<think>好的,用户想了解Carla自动驾驶模拟器的相关信息或教程,特别是AutoPilot的使用指南。我需要先回顾系统级指令,确保回答符合格式要求。首先,所有行内数学表达式要用$...$,但这个问题可能涉及较少数学内容,不过如果有的话要注意。独立公式用$$...$$,但同样可能用不上。必须使用中文,生成相关问题,并在引用处添加标识。 根据用户提供的引用内容,引用1提到CARLA是开源的自动驾驶模拟器,支持多种传感器和交通流管理。引用2指出AutoPilot模式是通过交通规则实现,而非机器学习模型,可以用快捷键P启动。引用3则提到通过脚本添加80辆自动驾驶车辆,它们会随机行驶直到脚本停止。 首先,我需要整理Carla的基本使用步骤,包括安装、启动、连接客户端、生成车辆、设置AutoPilot等。然后要解释AutoPilot的实现方式,强调其基于规则而非AI模型,这点在引用2和3中都有提到。同时,可能涉及Python API的使用,比如添加车辆和设置交通流的脚本,如引用3中的例子。 用户可能需要知道如何通过Python代码控制AutoPilot,以及相关的注意事项,比如同步模式、交通流管理等。此外,常见问题如车辆不动可能与同步模式设置有关,需要检查脚本是否正确。 在生成相关问题部分,可以围绕安装配置、AutoPilot与AI的区别、交通流管理、传感器集成以及故障排除等方面提问。这些问题能够帮助用户深入理解Carla的使用和原理。 要确保回答结构清晰,分步骤说明,并引用正确的来源。同时,避免使用Markdown格式,但按照用户的要求,使用代码块展示Python示例。最后,检查引用标识是否正确添加,如引用2和3中的内容对应AutoPilot的不同方面。</think>### Carla自动驾驶模拟器AutoPilot使用指南 #### 一、基础配置 1. **安装与启动** 通过`pip install carla`安装Python包,下载预编译的模拟器服务端(如Windows的CARLA_0.9.14.zip),运行`CarlaUE4.exe`启动服务端。 2. **连接客户端** 使用Python客户端连接服务端: ```python import carla client = carla.Client('localhost', 2000) world = client.get_world() ``` #### 二、AutoPilot功能实现 1. **手动启用AutoPilot** 在模拟器界面按`P`键,可将玩家车辆切换为基于交通规则的自动驾驶模式[^2]。 2. **通过代码批量生成自动驾驶车辆** ```python # 生成80辆自动驾驶车辆 traffic_manager = client.get_trafficmanager() blueprints = world.get_blueprint_library().filter('vehicle.*') for i in range(80): transform = random.choice(world.get_map().get_spawn_points()) vehicle = world.spawn_actor(random.choice(blueprints), transform) vehicle.set_autopilot(True, traffic_manager.get_port()) ``` 此代码会生成随机行驶的自动驾驶车队,车辆会持续运行直到脚本终止[^3]。 #### 三、关键特性说明 1. **与AI模型的区别** AutoPilot基于预置的路径规划、交通信号灯识别和避障规则实现,而非机器学习模型[^2]。 2. **同步模式设置** 建议启用同步模式以保证时间步进精确性: ```python settings = world.get_settings() settings.synchronous_mode = True world.apply_settings(settings) ``` #### 四、典型应用场景 ```mermaid graph TD A[传感器数据采集] --> B[交通流模拟测试] B --> C[控制算法验证] C --> D[多车协同驾驶研究] ``` #### 五、常见问题排查 - **车辆静止问题**:检查是否启用同步模式后未执行`world.tick()` - **交通灯不响应**:确认`traffic_manager`的`set_synchronous_mode(True)` - **端口冲突**:`traffic_manager`默认使用8000端口,需避免重复占用
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值