力扣—— 295. 数据流的中位数(困难)

本文介绍了如何利用C++实现一个大小堆(大顶堆和小顶堆)结构,以高效地找到给定数据集的中位数。通过堆操作优化,时间复杂度保持在O(logn),适用于动态插入和查找中位数的应用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

在这里插入图片描述

问题分析

在这里插入图片描述
使用大小堆来完成:
在这里插入图片描述
我们让最大堆总是大于最小堆一个量或者等于最小堆数量,中位数只可能是最大堆顶或最大堆与最小堆堆顶平均值。

c++代码

class MedianFinder {
public:
    //大顶堆 + 小顶堆 的方法
    //小顶堆
    priority_queue<int, vector<int>, greater<int>> minHeap;
    //大顶堆
    priority_queue<int> maxHeap;
    MedianFinder() {
    }
    // 时间复杂度为O(logn)
    //如果整个列表的长度为n的话
    //那么大顶堆就用于存储前k个较小的元素,因为大顶堆中的堆顶的元素值最大
    //而小顶堆就用于存储后n-k个较大的元素,因为小顶堆中的堆顶的元素值最小
    //k和n-k还必须满一个条件:那就是当n为偶数时,k=n-k;当n为奇数时,k=n-k+1;必须满足这个等式
    //当n为偶数时,中位数等于(大顶堆堆顶值 + 小顶堆堆顶值)/ 2
    //当n为奇数时,中位数就等于大顶堆堆顶值
    void addNum(int num) {
    	//为空直接存
        if (maxHeap.empty()) {
            maxHeap.push(num);
            return;
        }
        if (num <= maxHeap.top()) maxHeap.push(num);
        else minHeap.push(num);
        //最大堆只能比最小堆多一个元素,或者两者相等
        if (maxHeap.size() > minHeap.size() + 1) {
            minHeap.push(maxHeap.top());
            maxHeap.pop();
        }
        //最大堆不能比最小堆中的元素少
        if (maxHeap.size() < minHeap.size()) {
            maxHeap.push(minHeap.top());
            minHeap.pop();
        }
    }
    double findMedian() {
        if (maxHeap.size() == minHeap.size() + 1) { //大顶堆元素数量比小顶堆元素数量多一
            return maxHeap.top();
        }
        else { //大顶堆元素数量 = 小顶堆元素数量
            return (maxHeap.top() + minHeap.top()) * 0.5;
        }
    }
};
/**
 * Your MedianFinder object will be instantiated and called as such:
 * MedianFinder* obj = new MedianFinder();
 * obj->addNum(num);
 * double param_2 = obj->findMedian();
 */
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小屋*

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值