Bandits for Structure Perturbation-based Black-box Attacks to Graph Neural Networks with Theoretical

Bandits for Structure Perturbation-based Black-box Attacks to Graph Neural Networks with Theoretical Guarantees(具有理论保证的基于结构扰动的图神经网络黑盒攻击的强盗算法)

本文研究了具有结构扰动的GNN的软标签黑盒攻击问题,但这种新的攻击设置更具有挑战性,本文寻找最优结构扰动本质上是一个NP-hard问题(就是二元优化问题),攻击者只能通过查询模型来获得预测。

具体实现:

  1. 第一步是在理论保证下解决基于结构扰动的gnn黑盒攻击问题。具体来说,我们首先将攻击重新定义为一个强盗优化(即强盗反馈在线优化)问题,该问题描述了攻击者在黑盒GNN模型上的查询过程,并捕获了未知梯度。
  2. 然后,我们处理离散结构扰动的二元约束,并将其集成到基于土匪的攻击目标中。
  3. 接下来,我们设计了一种高效有效的对gnn的在线攻击。
  4. 最后,我们从理论上分析我们的攻击。

Preliminaries and Problem Formulation

Problem formulation

目标节点v,标签y_{v},邻接向量a_{v}.是v上的对抗性结构扰动。定义v的扰动邻接向量为:Cvu是修改v和u之间连接状态的代价。设L(av)为目标节点v未受攻击时的损失函数,对于对抗扰动sv,攻击损失为L(av⊕sv)。

本文采用CW攻击损失函数,攻击置信度是k。具体定义为:

基于 结构扰动的黑盒攻击GNN问题可以表述为:

 其中,第一个约束意味着要扰动的边数不超过B,第二个约束意味着扰动的总代价不超过C

 引理1:公式3是一个NP-hard问题

引理1也表明,在多项式时间内计算大图(即s_{v}具有较大的维数时)下的最优扰动向量s^{*}_{v}是困难的,为此,我们的目的是设计一个近似算法来导出次最优解。将组合二元约束s_{v}\in \left \{ 0,1 \right \}^{N}松弛为凸包s_{v}\in \left [ 0,1 \right ]^N得到一个连续的优化问题。设s^{*}_{v}为连续优化问题的接,我们可以通过使用像伯努利抽样那用的随机抽样将s^{*}_{v}四舍五入到组合空间\left [ 0,1 \right ]^N中导出等式3中原始问题的次最优解,

引理2表征期望中s_{v}s^{*}_{v}的关系:

 为了解决松弛连续优化问题,通常采用PGD,但是PGD需要梯度,在本文黑盒设置中,只有预测结果可以使用,而非确切的梯度,攻击问题变成了如何估计梯度,使PGD可以使用。本文的目的是使用controlling the exploration-exploitation tradeoff via bandit methods.

 Reformulating our attack as a bandit problem

 在bandit feedback下,攻击这想要最大化累计奖励。但由于攻击者在每一轮中都不知道最优臂的s^{*}_{v},因此会产生遗憾,即最优臂s^{*}_{v}下的最大奖励与攻击者的攻击算法的奖励之间的差距。然后,攻击者的目标是尽量减少累积的遗憾。设Reg(T)为T轮累计后悔次数,s_{v}^{t}为第T轮选取的扰动向量,

 

 Structure Perturbation-based Black-Box Attacks to GNNs via Bandits

引理3可以推导出近似梯度

(对于从单位球s上均匀采样的单位向量u和一个足够小的\delta>0,可以估计出梯度。)

 算法:

L(s_{v}^{t})

 算法解释:

在第1行中,设置0为初始先验向量v^{1}

在第2-8行中,我们计算了一个亚最优的扰动矢量来攻击目标GNN。

在第t轮,我们从单位球S中随机选取一个单位向量u^{t}作为行3中的随机梯度。 

 在第四行中,我们根据所选的随机梯度u^{t}更新先验向量v^{t},推导出一个松弛扰动向量\widehat{s}^{t}_{v}

 第5行,将\widehat{s}^{t}_{v}转换成二进制s^{t}_{v},采用的方法是将其top-B非零值(对应于\widehat{s}^{t}_{v}中B最大非零概率的条目)设置为1,(从而在最多B条边上进行扰动),其余值设置为0.

 在第6行中,我们使用s^{t}_{v}查询GNN模型f_{\Theta}^{*},并获得一个反馈L(s^{t}_{v})

 在第7行中,对arm W进行PGD,更新t+1轮的v^{t+1}.

最后,经过T次查询,得到目标节点v的扰动向量s_{v}^{T}

 这种对节点分类的攻击可以扩展到用于图分类的GNN模型,在图分类模型中,他的输入是土地邻接矩阵,输出的是图的标签。在节点分类中,我们的目标是扰动目标节点的邻接向量,而在图分类中,我们扰动扰动邻接矩阵。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值