二重积分的对称性技巧

前往我的主页以获得更好的阅读体验二重积分的对称性技巧 - DearXuan的主页icon-default.png?t=M4ADhttps://blog.dearxuan.com/2022/05/26/%E4%BA%8C%E9%87%8D%E7%A7%AF%E5%88%86%E7%9A%84%E5%AF%B9%E7%A7%B0%E6%80%A7%E6%8A%80%E5%B7%A7/

对称性

当被积函数较为复杂,或者由一个简单项和一个极其复杂的项组合成时,直接积分非常麻烦,此时可以观察积分区域D,巧妙利用D的对称性来抵消掉复杂的部分,从而简化计算

例题1

不难看出ln函数是一个奇函数,而x范围恰好是对称的,因此积分后这部分一定为0,则计算时可以直接舍弃右边的ln函数

例题2

将被积函数展开,得到项 4xy,同时发现区域D是一个以原点为圆心的圆,该项在一三象限为正,在二四象限为负,可以相互抵消

例题3

显然积分区域D是一个关于x轴对称的圆,因此项 xy 可以被抵消

同时由于积分区域是个圆,用直角坐标难以计算,因此改用极坐标

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dear_Xuan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值