高等数学 第11讲 二重积分_概念性质_计算方法

二重积分

二重积分的应用仅数学一学习

1.概念,性质与对称性

1.1 概念

几何意义:
二重积分是一个数,当其被积函数≥0时,其值等于以积分域D为底,以曲面z=f(x,y)为曲顶柱体的体积。

1.2 性质

性质一:可积函数必有界,当f(x,y)在有界闭区域上可积时,f(x,y)在D上必有界。
性质二:区域D的拆分,D可以拆分为D1+D2
性质三:内加绝对值≥外加绝对值
性质四:估值定理
设M和m分别是f(x,y)在有界闭区域D上的最大值和最小值,A为D的面积,则有
m A ≤ ∬ D f ( x , y ) d σ ≤ M A mA \leq \iint \limits_{D}^{}f\left(x,y\right)d\sigma \leq MA mADf(x,y)dσMA

性质五:二重积分中值定理
设函数 f ( x , y ) 在有界闭区域 D 上连续, A 为 D 的面积,则在 D 上至少存在一点 ( ξ , η ) ,使得 ∬ D f ( x , y ) d σ = f ( ξ , η ) A    设函数f\left(x,y\right)在有界闭区域D上连续,A为D的面积,则在D上至少存在一点\left(\xi ,\eta \right),使得\\\iint \limits_{D}^{}f\left(x,y\right)d\sigma = f\left(\xi ,\eta \right)A\:\: 设函数f(x,y)在有界闭区域D上连续,AD的面积,则在D上至少存在一点(ξ,η),使得Df(x,y)dσ=f(ξ,η)A

1.3 对称性

对称性分为普通对称性和轮换对称性

1.3.1 普通对称性

核心:
普通对称性,既看积分区域,又看被积函数
首先,积分区域得关于y轴或者x轴对称
其次,被积函数要满足奇偶

核心口诀:偶倍奇0
积分区域D关于y轴对称
f(-x,y)=f(x,y)为偶,原先的积分区域为D,改为2D1
f(x,y)=-f(-x,y)为奇,直接=0

积分区域关于x轴对称
f(x,-y)=f(x,y)为偶,原先的积分区域为D,改为2D1
f(x,y)=-f(x,-y)为奇,直接=0

关于y=x对称,也要考虑到,若还满足轮换对称性,那就是2倍的y=x轴任取一半积分区域的二重积分

1.3.2 轮换对称性

核心:
轮换对称性,只看积分区域,积分区域满足y=x对称(通俗讲就是,x换成y,y换成x,积分区域不变,就存在以下结论。

∬ D f ( x , y ) d x d y = ∬ D f ( y , x ) d x d y = 1 2 ∬ D [ f ( x , y ) + f ( y , x ) ] d x d y \iint \limits_{D}^{}f\left(x,y\right)dxdy = \iint \limits_{D}^{}f\left(y,x\right)dxdy = \frac{1}{2}\iint \limits_{D}^{}\left[f\left(x,y\right) + f\left(y,x\right)\right]dxdy Df(x,y)dxdy=Df(y,x)dxdy=21D[f(x,y)+f(y,x)]dxdy
再次提醒,轮换对称性不需看被积函数,即f(x,y)和f(y,x)不必相等,若相等就会得到普通对称性的结论,即f(x,y)=f(y,x),关于y=x轴对称的积分区域取一半求2倍就行。

2.二重积分的计算

2.1 直角坐标系下交换积分次序

x型区域,先y后x,即先()dy,此时的积分上下限用x表示,然后再dx
y型区域,先x后y,即先()dx,此时的积分上下限用y表示,然后再dy

2.2 利用极坐标

什么时候用极坐标很关键?
适合用极坐标计算的二重积分的特征:
被极函数特征 : f ( x 2 + y 2 ) f ( y x ) , f ( x y )   积分区域特征 : x 2 + y 2 ≤ R 2 (圆) , x 2 + y 2 ≤ 2 a x (椭圆)   被极函数特征:f\left(\sqrt[]{x^{2} + y^{2}}\right)f\left(\frac{y}{x}\right),f\left(\frac{x}{y}\right)\:\\积分区域特征:x^{2} + y^{2} \leq R^{2}(圆),x^{2} + y^{2} \leq 2ax(椭圆)\: 被极函数特征:f(x2+y2 )f(xy),f(yx)积分区域特征:x2+y2R2(圆),x2+y22ax(椭圆)

2.3 利用对称性

不毕多说,用对称性减少不必要的计算。

2.4 平移法

为什么要使用平移法?
某些题目中,如圆,正方形之类的图形,圆的圆心并不在原点上,通过常规的计算非常复杂,而且由于不在原点上,对称性用不了,我们很难去化简计算。
但是二重积分换元法属于超纲内容,只需要会用这种平移的情况即可。

在这里插入图片描述

2.5 利用形心公式(待整理)

3.重难点题型总结

3.1 极坐标系下交换积分次序

一般情况极坐标系都是先r后θ,但是交换积分次序的题目要求先θ后r

一种方法搞定:

  1. 将θ写成x,将r写成y
  2. 在直角坐标系下交换积分
  3. 将结果带回,x写成θ,y写成r

注意:
1️⃣该过程中,被积函数不动,因为被积函数这么来回改变,它不会变。
2️⃣注意三角函数求反函数时,要注意区间,不能直接就arc

题目实战来源:
660第109题

3.2 抽象函数的二重积分

若告诉g(x)是f(x)的反函数,其实也就是意味着,g(x)=f-1(x),意味着,他俩的复合函数=x。
二重积分积不出来的时候,考虑

  1. 分布积分法
  2. 画图交换积分次序

题目实战来源:
660第275题

3.3 二重积分比较大小

二重积分比大小,其实就是抓住被积函数或者积分区域两个方向,比较,三者比较要借助中间量进行比较。

  1. 积分区域比较
    积分区域比较就是画图看哪个积分区域大
  2. 被极函数比较
    若被积函数的f()相同,f(内容)不同,则利用单调性等比较。
    若f()不同,利用均值不等式等比较

3.4 二重积分的极限问题

利用二重积分中值定理,其中在问题中,f(ξ,η)往往趋近到f(0,0),并用洛必达法则做题。
在这里插入图片描述

题目实战来源:
660第273题

3.5 极坐标二重积分变为一重积分(一个容易忽略的点)

在这里插入图片描述
题目实战来源:
660第498题

  • 33
    点赞
  • 40
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 13
    评论
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小徐要考研

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值