代数余子式及其相关的公式和性质很多,以下尽可能全面地列举一些,并用数学符号表示:
1. 定义:
设 A 为一个 n 阶方阵,其元素为 a i j a_{ij} aij,则元素 a i j a_{ij} aij 的代数余子式 C i j C_{ij} Cij 定义为:
C i j = ( − 1 ) i + j M i j C_{ij} = (-1)^{i+j} M_{ij} Cij=(−1)i+jMij
其中 M i j M_{ij} Mij 是 a i j a_{ij} aij 的余子式,即去掉 a i j a_{ij} aij 所在的第 i 行和第 j 列后剩余元素构成的 (n-1) 阶行列式的值。
2. 行列式按行/列展开:
这是代数余子式最主要的应用。n 阶行列式 |A| 可以按任意一行或一列展开:
- 按第 i 行展开: ∣ A ∣ = ∑ j = 1 n a i j C i j |A| = \sum_{j=1}^{n} a_{ij} C_{ij} ∣A∣=j=1∑na