代数余子式与伴随矩阵

代数余子式及其相关的公式和性质很多,以下尽可能全面地列举一些,并用数学符号表示:

1. 定义:

设 A 为一个 n 阶方阵,其元素为 a i j a_{ij} aij,则元素 a i j a_{ij} aij 的代数余子式 C i j C_{ij} Cij 定义为:

C i j = ( − 1 ) i + j M i j C_{ij} = (-1)^{i+j} M_{ij} Cij=(1)i+jMij

其中 M i j M_{ij} Mij a i j a_{ij} aij 的余子式,即去掉 a i j a_{ij} aij 所在的第 i 行和第 j 列后剩余元素构成的 (n-1) 阶行列式的值。

2. 行列式按行/列展开:

这是代数余子式最主要的应用。n 阶行列式 |A| 可以按任意一行或一列展开:

  • 按第 i 行展开: ∣ A ∣ = ∑ j = 1 n a i j C i j |A| = \sum_{j=1}^{n} a_{ij} C_{ij} A=j=1na
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值