动手学数据分析(4)数据可视化

本文介绍了数据可视化的概念及其目的,并详细讲解了Python中的matplotlib库,包括pyplot模块、创建绘图对象、修改刻度、添加坐标轴、创建图例和保存图表。此外,还探讨了pandas的绘图函数,如线型图、柱状图、直方图、密度图、散布图和饼图,并通过泰坦尼克号数据集进行了案例分析,展示了如何使用这些图表来揭示数据中的模式和趋势。
摘要由CSDN通过智能技术生成

什么是数据可视化?

数据可视化其实是将抽象概念进行形象性表达,将抽象语言进行具象图形可视的过程。数据可视化,不仅仅是统计图表。本质上,任何能够借助于图形的方式展示事物原理、规律、逻辑的方法都叫数据可视化。
可视化的目的是传播数据,因此需要花时间了解什么才是图表的基础,否则就是堆砌数字。

在python中有很多可视化工具,这里我们主要讲的是matplotlib。matplotlib是Python最著名的绘图库,它提供了一整套和Matlab相似的命令API,十分适合进行交互式制图;也可以方便地将它作为绘图控件,嵌入GUI应用程序中。
matplotlib的最好的学习资源:matplotlib的示例库和官方文档,官网地址:https://matplotlib.org/

matplotlib

引入:

import matplotlib.pyplot as plt

【思考】为什么要引入pyplot模块?
matplotlib中许多我们用到的函数如plot,close等都位于matplotlib.pyplot模块中。

创建绘图对象:

plt.figure()

通过figsize参数可以指定绘图对象的宽度和高度,单位为英寸。

创建subplot对象:

fig.add_subplot(2,2,1)
#图像是2*2的,且当前选中的是四个subplot中的第一个。

plt.subplots()方法

#创建figure并返回一个含有已创建的subplot对象的numpy数组
plt.subplots()
参数 说明
nrows 行数
ncols 列数
sharex 所有subplot应该使用相同的x轴刻度
sharey 所有subplot应该使用相同的y轴刻度
subplot_kw 用于创建各subplot的关键字字典
**fig_kw 创建figure时的其他关键字

subplots_adjust()方法

subplots_adjust(left=None,right=None,top=None,wspace=None,hspace=None)
#wspace和hpace控制宽度和高度的百分比,用于制作subplot之间的间距

颜色和线型

ax.plot(x,y,linestyle="--",color='g',marker='0')

刻度
修改刻度可以使用set_xticks和set_xticklabels.前者告诉matplotlib要将刻度放在数据范围的哪些位置,后者可以用来对其他任何的值用作标签。

ticks=ax.set_xticks([0,250,500,750,1000])
labels=ax.set_xticklabels['one','two','three','four','five'],
                        rotation=30,fontsize='small')
ax.set_xlabel('Stages')    #为X轴摄制一个名称
ax.set_title('plot')   #为图设置标题。

修改y轴的方法类似,不再赘述。

添加坐标轴

ax = plt.twinx()  #twinx()可以为图增加纵坐标轴
ax2.set_ylabel("y2")
ax.set_ylabel("y2")

创建图例

ax.legend(loc='best')

添加注解
注解可以通过text,arrow,annotate等函数添加。

在这里插入代码片

图表的保存

plt.savefig('figpath.svg')

该方法相当于Figure对象的实例方法savefig。
文件类型是通过文件拓展名推断出来的。

参数 说明
frame 含有文件路
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值