一、前言
本篇文章主要通过 coze(下文统称为“扣子”)平台搭建一款智能体应用来进一步和大家分享对 Agent 的理解。
二、扣子是什么?
扣子是字节跳动在2024年2月1日发布的一款一站式AI智能体开发平台,也是国内首个AI聊天机器人快速开发平台。
▲扣子首页
以下是扣子平台创建Bot的页面,对于初次使用者而言功能很多,不知道从何下手搭建智能体。
▲扣子的智能体搭建页面
上文中提及 Agent 由4个关键部分组成,分别是:规划(Planning)、记忆(Memory)、工具(Tools)、行动(Action)
▲由LLM驱动的智能体系统
我们不妨围绕这4个关键部分对扣子的智能体创建页面进行标注,如下图所示:
▲对智能体搭建页面进行标注
通过标注,大家会发现搭建一个智能体的过程也是在配置四个关键要素的过程,比如:
-
人设与回复逻辑,指Prompt的填写,对应的是规划(Planning)
-
插件、工作流、图像流等技能,以及文本、表格等知识配置,对应的是工具(Tools)
-
变量、数据库、长期记忆等配置,对应的是记忆(Memory)
-
预览与调试对应的是执行(Action)
接下来笔者用一个案例来分享如何通过扣子搭建智能体。
三、知识库助手
在日常的产品工作中,会产生大量的知识信息,如:产品思考、学习总结、读书笔记等,目前笔者统一通过笔记工具进行管理。
▲笔记工具储存的知识库
但存在一个问题,随着积累的知识越来越多时,单靠分类、标签,仍然难以快速查找到自己想要的信息。有时候需要每个笔记文件检索翻阅内容,十分地浪费时间。
那么是否可以搭建一个专属于自己的知识库助手,只需要简单提问,助手既可以给出针对性的回答,让整个知识检索流程更加丝滑流畅呢?
我们不妨通过扣子来试试:
1、创建Bot
首先在扣子的首页,点击“创建Bot”,Bot 就是Agent智能体(下文统称为“智能体”)。简单描述Bot的名称以及功能介绍,这里称为“知识库助手”。
▲创建Bot
2、配置智能体人设
然后我们定义好智能体的人设(即Prompt),写Prompt的过程中,可以简单描述角色、要求,再利用扣子的AI优化功能进行完善。
▲通过扣子AI功能优化智能体人设
3、创建知识库
扣子支持通过文本、表格、图片等文件类型创建知识库,这里选择文本格式(路径为:点击“个人空间”—“知识库”—“创建知识库”)。
▲选择导入知识文件类型与方式
针对文本格式,支持多种导入方式,如:本地文档、在线数据、Notion、飞书等。笔者通过笔记工具把知识信息以DOC的格式进行导出,再导入到扣子创建知识库。
▲导入本地知识文件
文件导入后,可以对知识进行切片分段,目前支持“自动分段清洗”与“自定义”两种方式,通过分段处理有助于提高检索的精准度。
▲对本地知识分段
到这里,知识库创建完毕。
4、搭建工作流
由于提问后智能体主要围绕本地知识库展开分析推理,因此不用接入第三方的插件工具。但仅仅外挂一个本地知识库,智能体可能会返回一些和提问无相关的内容,为了让答复更精准,我们需要搭建一个工作流(路径为:点击“个人空间”—“工作流”—“创建工作流”)。
▲创建工作流
工作流可以理解为:通过选择不同的节点把任务拆解为多个步骤,让智能体按照预设工作流程对任务进行分步处理,从而提升对复杂任务的处理效率。
我们可以在左侧选择节点后点击“+”,把节点添加到右侧工作流编辑区,如下图所示:
▲工作流编辑区域
a)开始节点
“开始”节点会接受我们输入的问题,这里把输入变量名称设置为“question”。
▲开始节点
b)知识库节点
“知识库” 节点会从本地知识库中检索出与问题相关的知识片段,我们把刚才创建好的知识库添加到该节点中。
▲知识库节点
c)大模型节点
在“知识库”节点获取到知识片段后,结合原问题组装成提示词再送到“大模型”节点进行处理。此节点支持选择不同的大模型,如:豆包、通义千问、kimi、智谱等。
▲大模型选择
在“提示词”这一部分,定义好角色、任务与要求,可以让大模型更高效地处理任务。
▲大模型节点
d)结束节点
大模型处理后,通过“结束”节点展示答复,完成任务。
▲结束节点
编辑好工作流后,可以点击右上方按钮对工作流进行【试运行】。
▲对工作流进行试运行
输入问题后,验证工作流是否可以运行成功,成功后点击【发布】即可完成工作流搭建。
▲运行成功
5、调试与发布
接着,我们在智能体搭建页面中,添加上工作流。
▲添加工作流
然后在右侧的预览与调试区域中,对智能体进行测试。
▲测试智能体
为了提高与智能体的对话体验,我们还可以配置如:开场白、快捷指令、角色语音等个性化功能,让智能体更“拟人化”。
▲智能体的个性化设置
最后,在右上方点击【发布】按钮,选择对应的发布平台即可,扣子支持了豆包、飞书、抖音、微信公众号等多个平台。
▲智能体发布
这样,一个**【知识库助手】**就搭建完成。
为了方便展示效果,笔者把智能体发布到豆包上,以下是一段演示视频(回答含语音):
四、结语
“知识库助手”只是智能体搭建中,最小的闭环应用,按照相同的思路,我们可以构建出更加复杂且强大的Agent。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。