前言
GPT(Generative Pre-trained Transformer)是一个由OpenAI开发的自然语言处理模型,它代表了人工智能领域的一次重大突破。GPT模型的核心是Transformer架构,这是一种使用自注意力机制的深度学习模型,能够捕捉输入数据中长距离的依赖关系。Transformer的设计允许模型在处理序列数据时,能够同时考虑到序列中各个元素的上下文信息,这对于理解和生成自然语言至关重要。
GPT模型在现代NLP中扮演着重要角色,因为它们极大地推动了机器在理解和生成自然语言方面的能力。从自动文本生成到情感分析,再到复杂的对话系统,GPT的应用范围广泛,它们在提高机器与人类之间交流的自然性和流畅性方面起到了关键作用。
一、GPT-1
GPT-1是由OpenAI在2018年6月发布的,GPT-1是基于Transformer架构,采用了仅有解码器的Transformer模型,专注于预测下一个词元。GPT-1是这一系列模型的首款产品,它在多种语言任务上展现出了优秀的性能,证明了Transformer架构在语言模型中的有效性。
GPT-1论文:《__Improving Language Understanding by Generative Pre-Training》
GPT-1的架构由12层Transformer组成,每层都使用了自注意力和前馈神经网络。GPT-1的关键特征是:生成式预训练(无监督)+判别式任务精调(有监督)。GPT-1在文本生成和理解任务上表现出了很好的性能,成为了当时最先进的自然语言处理模型之一。
二、GPT-2
GPT-2是由OpenAI在2019年发布的,作为GPT-1的后续版本,它在多个方面进行了显著的技术改进。GPT-2 的核心思想就是,当模型的容量非常大且数据量足够丰富时,仅仅靠语言模型的学习便可以完成其他有监督学习的任务,不需要在下游任务微调。GPT-2依然沿用GPT-1单向transformer的模式,只不过使用了更多的网络参数和更大的数据集。GPT-2还提出了一个新的更难的任务:零样本学习(zero-shot),即将预训练好的模型直接应用于诸多的下游任务。
GPT-2模型通过扩大参数规模和使用无监督预训练,探索了一种新的多任务学习框架,旨在提高模型的通用性和灵活性,减少对特定任务微调的依赖。同时,它也强调了语言模型在理解和生成自然语言文本方面的重要性,以及通过准确预测下一个词元来提高对世界知识的理解。
三、GPT-3
GPT-3由OpenAI在2020年发布,是迄今为止最大的语言模型之一, GPT-3在理解和生成语言方面具有极其出色的能力,能够适应更广泛的语言处理任务,从简单的文本生成到复杂的语言推理。GPT-3的表现在多种标准语言理解测试中都达到了新的高度。GPT-3的性能进一步提升,不仅在文本生成方面表现出色,还能进行翻译、问答、摘要、编程等多种任务,展示出了强大的多任务能力。
GPT-3论文:《Language Models are Few-Shot Learners》
GPT-3首次提出了“上下文学习”概念,允许大语言模型通过少样本学习解决各种任务,消除了对新任务进行微调的需求。GPT-3采用了更高效的训练策略,包括更精细的梯度下降技术和改进的正则化方法,这些优化帮助模型在训练过程中更好地泛化和避免过拟合。
零基础入门AI大模型
今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
有需要的小伙伴,可以点击下方链接免费领取【保证100%免费
】
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
5.免费获取
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码或者点击以下链接都可以免费领取【保证100%免费】