Convolutional Multiple Instance Learning for SleepSpindle Detection With Label Refinement文献笔记

基本信息

原文链接:Convolutional Multiple Instance Learning for Sleep Spindle Detection With Label Refinement | IEEE Journals & Magazine | IEEE Xplore

任务目标:纺锤体检测

纺锤波:脑电图(EEG)中11 - 16 Hz的短暂振荡活动爆发

实现方法:基于CNN的MIL框架进行特征提取+标签细化(合并原始标签和MIL框架预测标签),两个阶段交替进行

提出问题:1.低质量的标签会损害基于数据的特征学习的性能,因为网络可能会错误地从模糊的标签中学习。从客观和主观两方面来看,纺锤波的标注都可能是不准确的,不同专家的标注也会有较大差异。  2.个体之间纺锤体有较大的差异

具体方法

1.基于CNN的MIL框架

假设大多数标签是正确的,大多数只有起点和终点可能是不准确的。因此,我们将局部信号模式视为实例,将纺锤体视为包。基于CNN,在不完全标签下,从局部信号中学习到有效的实例级特征,能较好地反映大多数标签。在MIL框架的指导下,该模型可以学习到更鲁棒的特征,从而输出更准确的袋级标签。

假设有一个标注的数据集D=\left \{ (S_n,Y^m_n),n=1,2,3,...,N,m=1,2,..,M \right \},S_n为预处理后的脑电信号片段,Y^m_n为标签,N为脑电片段总数,M为专家数量。

首先,CNN特征提取器以具有C个通道和T个时间样本的Sn作为输入,通过接受场提取局部信号的特征。CNN结构包含四个块,其中两个连续的卷积层之后是一个批处理归一化层。

在CNN的基础上,MIL的实例被认为是局部信号的学习特征,因此一个由多个实例组成的包可以表示输入段Sn。由于实例是沿时间维度进行卷积后得到的,因此相邻实例的时间关系保持不变。实例级特征是通过对提取的特征hn的一半长度进行最大池化操作获得的。

通过相邻实例的平均池化以聚合连续时间段的实例,然后再通过对这样一段一段的表示进行全局聚合,得到袋级特征,根据其标签进行反向传播优化,损失函数使用交叉熵

2.标签细化

(1)对于每一个预测的睡眠纺锤体,找到其对应的原始标注;否则,如果不能找到对应的原始标注,所预测的纺锤体将被视为不正确的检测结果而被忽略

(2)计算基于开始和结束时间的预测睡眠纺锤波与其相应的原始注释之间的重叠。

(3)只对于有λ%及以上重叠度的纺锤体进行校正。

(4)将开始和结束时间修改为候选标签的开始和结束时间。

(5)将校正后的标签与原始标签合并为一个校正后的标签集

注意,在迭代学习过程中,我们无法获得睡眠纺锤波的准确标签。因此,我们只使用原始标签和从CNN-MIL框架估计的标签。

数据集

1.MASS: 由19名年轻健康参与者(8名男性和11名女性)以256 Hz采样的整晚脑电图记录组成。在这个子集中,由两个人类专家E1和E2在通道C3上提供睡眠纺锤体注释。E1专家对所有19名参与者进行了标记,并使用了来自AASM的标准指南。专家E2对15名参与者进行评分,剔除了4名录制质量较差的参与者,并使用带滤波信号进行评分。

2.DREAMS:所有记录均来自中央脑电通道(受试者1和3来自C3-A1,其余受试者来自Cz-A1)。录音的采样频率从50到200hz不等,并均匀重采样到256hz以进行标准化。在这个数据集中,6名受试者的睡眠纺锤波由两位专家E3和E4注释,其余受试者由一位专家E3注释。

在实验正式开始之前,作者对不同专家的标注做了统计。对于MASS, E2注释的睡眠纺锤体远多于E1注释的纺锤体,E2注释的纺锤体平均持续时间比E1长0.3 s左右。对于DREAMS,纺锤波数和平均持续时间的差异与MASS相似。E3标记的纺锤体总数比E4标记的纺锤体总数少约50个,E3标记的纺锤体平均持续时间比E4标记的纺锤体平均持续时间短约0.15 s。

数据预处理:采用零相位巴特沃斯滤波器对4 ~ 40 Hz的EEG信号进行带通滤波,并对工频干扰进行陷波滤波。然后,利用指数移动均值和衰减因子0.999计算方差对每个脑电信号进行标准化。

实验及其结果

评估指标:准确性、敏感性、特异性、精密度、负预测值(NPV)、f1评分、f2评分、未加权科恩卡帕系数(KC)、加权科恩卡帕系数(WKC)和马修斯相关系数(MCC)

考虑到MASS中来自不同专家的注释,我们研究中使用的基线E1 + E2标签集是由两个专家进行合并的:1)合并重叠的注释,将开始时间和结束时间分别设置为最早的开始时间和最晚的结束时间,2)保持未重叠的注释完整,同样,也获得了DREAMS中设定的基线E3 + E4标签。

实验设置:(MASS)

(1)五折交叉验证+lr=1e-4+15名受试者用于train,4名用于test

(2)输入维为C×T,其中C = C3的1个通道,T = 128个时间样本。在256hz的采样频率下,输入为0.5 s的信号段。CNN中滤波器的个数都设为50。

(3)在训练过程中,使用重叠滑动窗口对包含纺锤体的片段进行数据扩充,以平衡纺锤体和非纺锤体的输入样本数量。将包含纺锤波的EEG片段中至少50%的比例视为睡眠纺锤波事件,否则视为非纺锤波事件,将标签细化阶段使用的重叠比例λ设置为50%。

三种噪声标签:

(1) E1+E2+t S  (在纺锤体的起点和终点添加ts扰动来模拟噪声标签)(2) E1  (3)E2

实验结果:

(1)基于CNN的MIL框架的性能测试——与无MIL的框架相比较

(2)  标签细化性能测试

随着迭代次数的增加,开始和结束的时间在第一次迭代的时间周围波动,我们的方法的性能从第一次迭代开始趋于稳定。值得注意的是,开始和结束时间可以缩小或延长,以更接近准确的纺锤体注释。随着迭代的进行,非纺锤体段的概率逐渐减小。这可能意味着主轴特征分布与非主轴特征分布之间的距离越来越大,这有利于在给定噪声标签的情况下进行纺锤体检测。

(3)在噪声下的性能

可以观察到,在标签中的任何噪声比例下,我们的方法在与基线差±0.25 s的范围内都具有鲁棒性。随着有噪声标签比例的增加,f1分数的下降幅度较小。对于±0.3 s以上的差异,f1评分值在20%的噪声标签比例下下降,并且随着比例的增加表现相对较差。

(图6)

在图6(b)中可视化了在20%噪声标签情况下纺锤体段和非纺锤体段的输出概率分布,误差为±0.25 s。可见,标签细化有利于噪声标记下的纺锤体区分。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值