昇腾服务器(Atlas800系列)部署embedding和rerank模型

昇腾服务器部署embedding和rerank模型

1、确定安装环境

环境型号CANN版本
训练环境Atlas800T A2服务器CANN8.0.RC2及以上
推理环境Atlas800I A2服务器CANN8.0.RC2及以上
推理环境Atlas300IDUO推理卡CANN8.0.RC2及以上

2、获取下载包

资源包

可以使用wget命令下载:wget https://tools.obs.cn-south-292.ca-aicc.com:443/samples/llm/embed_rerank.tar.gz --no-check-certificate

3、基础环境配置

apt update && apt install curl build-essential autoconf libtool curl make g++ unzip wget libssl-dev pkg-config -y

4、创建一个conda环境

conda create -n Embedding --clone MindIE_1.0.RC2
conda activate Embedding

5、安装rust和protoc

  • 安装rust
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

出现下所示,选择1即可。

1) Proceed with standard installation (default - just press enter)
2) Customize installation
3) Cancel installation

在这里插入图片描述

  • 安装protobuf v21.12
    软件包提供了protobuf的源代码。直接解压配置和编译
tar -zxvf protobuf-all-21.12.tar.gz
cd protobuf-21.12
./configure
make -j20
make install

在命令行执行如下命令:
export LD_LIBRARY_PATH=/usr/local/lib:$LIB_LIBRARY_PATH

6、安装应用依赖

在主目录:

pip install -r requirements.txt
  • 安装Route

    • 进入$work_dir/TEI/text-embeddings-inference执行如下命令:
    ../../cargo/bin/cargo install --path router -F python -F http --no-default-features
    

安装成功后如图:
在这里插入图片描述

  • 进入$work_dir/TEI/text-embeddings-inference/backends/python/server

    • 执行安装依赖和编译安装
make install 
pip install transformers==4.37.0
pip install safetensors==0.3.3
poetry install

安装后截图:
在这里插入图片描述

7、运行模型和测试

  • embedding

    • 回到主目录下执行如下脚本:
start_im_embed.sh

在这里插入图片描述

  • 测试:
curl 127.0.0.1:11027/embed \
    -X POST \
    -d '{"inputs":"What is Deep Learning?"}' \
    -H 'Content-Type: application/json'

推理结果
在这里插入图片描述

  • rerank

    • 运行

      回到主目录下执行如下脚本:

start_im_rerank.sh
  • 测试

    curl 127.0.0.1:11028/rerank \
        -X POST \
        -d '{"query":"What is Deep Learning?", "texts": ["Deep Learning is not...", "Deep learning is..."]}' \
        -H 'Content-Type: application/json'
    

推理结果
推理

结论:
embedded 大概在20ms左右、rerank在30ms左右。速度可用~

Atlas 800 AI服务器(型号 9000 9000 )是基于华为鲲鹏 )是基于华为鲲鹏 )是基于华为鲲鹏 920+ 920+ 昇腾 910 处理器的 处理器的 AI 训练服务 器,实现完全自主可控广泛应用于深度学习模型开发和 器,实现完全自主可控广泛应用于深度学习模型开发和 器,实现完全自主可控广泛应用于深度学习模型开发和 器,实现完全自主可控广泛应用于深度学习模型开发和 器,实现完全自主可控广泛应用于深度学习模型开发和 器,实现完全自主可控广泛应用于深度学习模型开发和 器,实现完全自主可控广泛应用于深度学习模型开发和 AI 训练服务场景。该器 训练服务场景。该器 面向公有云、互联网运营商政府交通金融高校电力等领域,具计算 面向公有云、互联网运营商政府交通金融高校电力等领域,具计算 面向公有云、互联网运营商政府交通金融高校电力等领域,具计算 面向公有云、互联网运营商政府交通金融高校电力等领域,具计算 面向公有云、互联网运营商政府交通金融高校电力等领域,具计算 面向公有云、互联网运营商政府交通金融高校电力等领域,具计算 面向公有云、互联网运营商政府交通金融高校电力等领域,具计算 面向公有云、互联网运营商政府交通金融高校电力等领域,具计算 面向公有云、互联网运营商政府交通金融高校电力等领域,具计算 面向公有云、互联网运营商政府交通金融高校电力等领域,具计算 密度、高能效比网络带宽易扩展管理等优点,支 持单机和整柜销售密度、高能效比网络带宽易扩展管理等优点,支 持单机和整柜销售密度、高能效比网络带宽易扩展管理等优点,支 持单机和整柜销售密度、高能效比网络带宽易扩展管理等优点,支 持单机和整柜销售密度、高能效比网络带宽易扩展管理等优点,支 持单机和整柜销售密度、高能效比网络带宽易扩展管理等优点,支 持单机和整柜销售密度、高能效比网络带宽易扩展管理等优点,支 持单机和整柜销售密度、高能效比网络带宽易扩展管理等优点,支 持单机和整柜销售密度、高能效比网络带宽易扩展管理等优点,支 持单机和整柜销售密度、高能效比网络带宽易扩展管理等优点,支 持单机和整柜销售持风冷和液应用,满足企业机房部署大规模数据中心集群。 持风冷和液应用,满足企业机房部署大规模数据中心集群。 持风冷和液应用,满足企业机房部署大规模数据中心集群。 持风冷和液应用,满足企业机房部署大规模数据中心集群。 持风冷和液应用,满足企业机房部署大规模数据中心集群。 持风冷和液应用,满足企业机房部署大规模数据中心集群。 持风冷和液应用,满足企业机房部署大规模数据中心集群。 持
词袋模型embedding是自然语言处理中两种不同的表示文本的方法。 词袋模型是一种简单的表示方法,它将文本视为一个袋子,将文本中的所有词汇都放入其中,并统计每个词汇的出现次数或者出现与否。在词袋模型中,每个词汇都是独立的,不考虑其词法和语序的问题。因此,词袋模型只关注词汇的数量和频率,而不关注词汇之间的关系。 而embedding是一种更高级的文本表示方法,它通过学习将文本中的词汇转换为连续向量表示。这些向量被设计成能够捕捉词汇之间的语义和语法关系。通过embedding,相似的词汇在向量空间中会更加接近,可以进行词汇的比较和计算。embedding模型的训练输入一般是上下文相关的词对应的词向量,而输出是特定词汇的词向量。 因此,词袋模型更加简单,只考虑词汇的数量和出现频率,而embedding则通过学习将词汇转换为连续向量,能够更好地捕捉词汇之间的语义关系。最终的选择要根据具体的任务和需求来决定。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [one-hot(独热)、bag of word(词袋)、word-Embedding(词嵌入)浅析](https://blog.csdn.net/xixiaoyaoww/article/details/105459590)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [词袋模型(BOW,bag of words)和词向量模型(Word Embedding)概念介绍](https://blog.csdn.net/qq_43350003/article/details/105392702)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>