Datawhale开源组队学习 & 《机器学习》第六章 支持向量机


前言

兜兜转转,终于来到了第六章,毫无疑问,这一章是《机器学习》这本书目前为止的“最具挑战性”的一个章节——


一、旧壶装新酒

这次把凸优化问题的解法又给温习了一遍。那么回顾一下,凸优化问题的解法依次出现在了哪些地方呢?

a. SVM(硬间隔)优化模型问题:
最后我们需要求解的是一个离正负样本均“尽可能远”的超平面,并且满足其余所有样本点的几何距离均尽可能大。也就是说我们可以把这个问题归结为寻找一超平面,是的距离其几何间隔最小的样本(xmin, ymin)的间隔值尽可能大。

b. 拉格朗日对偶问题:
虽然支持向量机可以直接当做一个凸优化问题的问题来解,但是为了使问题更具一般性,(也是为了推广到非线性分类问题——核函数做铺垫),我们可以将其视作拉格朗日对偶问题来求解,对偶函数恒为一个凹函数(加一个符号即可转化为凸函数),约束条件u > = 0恒为凸集,更容易求解。

c. SVM(软间隔)优化模型:
引入松弛变量和其对应的权重,然后改变约束条件中“距离”值的范围,我们仍然可以将其转化为一个拉格朗日对偶问题来求解。

d. SVR支持向量回归模型:
从几何角度上看,是将回归模型扩展成一个具有“间隔带”的拟合区域;从数学角度上理解,将偏离间隔带的距离作为损失,然后以最小化损失的方法拟合出最后的直线和间隔区域。间隔区域可以理解成松弛变量,添加一个正则项后又是一个与SVM相同的优化模型形式,那么也可以转化成拉格朗日问题来解!


二、作业 6. 1的证明

作业要求证明一个样本点到超平面的距离,这应该是唯一一个能力范围之内的证明QAQ。这里再强化记忆一下~

一个问题、两个方面:
a. 从几何视角看,距离就是点到平面的投影直线的模长,也可以看做单位向量的模长(可以由法向量归一化得到)乘以距离。
b. 从向量的视角看,就是该点到投影点的向量与单位法向量的点积,把表达式展开

综合a, b 化简带入已知条件,就可以得到距离公式了。

三、 结尾说明

列出了那么多表达式,给出了那么多算法,其实我们最终都是要求解出一个合适的解。我们显然是不能用手算算出来,一个好的算法也需要我们去编程实现,希望在后续的课程中能先把理论部分消化吸收一下,学习一下如何真正利用算法到实处,解决一些有意思的问题,画下一个完美的“End”

本文重点参考以下内容:

  1. 感谢帅气的马里奥老师以及他的精彩教程【吃瓜教程】《机器学习公式详解》(南瓜书)与西瓜书公式推导直播合集_哔哩哔哩_bilibili
  2. 感谢周志华老师的硬核烧脑的西瓜书
  3. 感谢Datawhale开源组织为我们提供丰富优秀的开源项目,谢谢你们!!!
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值