NvidiaJestonTX2刷机+部署yolov5全过程(新手版)

本文讲述了作者作为新手如何刷机JetsonTX2,安装PyTorch以及遇到的问题和解决方案,包括SDKManager的地区限制、依赖库安装和网络优化等步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本篇博客去年本科毕业写的,现在看了草稿箱才想起来发布。。。

由于本科毕设第一次接触嵌入式设备,问老师借了tx2板子(有原装充电线和两个天线)。

拿到手根据网上教程陆陆续续准备了:

1.一块hdmi显示屏+hdmi线,有线鼠标和键盘。

2.原装microusb to usbA线(某宝36r+6邮费购入),用于连接tx2和PC。

3.由于tx2只有一个usb口,又购入了一个拓展坞,用于同时连接鼠标和键盘。

4.两根网线,后来只用了一根,PC直接连接wifi,tx2用网线连接路由器。

5.官网注册了一个nvida developer账号。

6.PC用VMware开了一个ubuntu虚拟机18.04

一、刷机

tx2连接显示器开机后发现有两个用户名,问老师密码,老师说忘了。。。tx2开机怎么按也进不去命令行模式,chatgpt提供的修改方法也无效。于是决定开始刷机。

选择了jetpack4.6.3,对应的sdk manager版本应该是1.9.2

下载地址:JetPack SDK | NVIDIA Developer

在官网下载后,在ubuntu终端输入

sudo apt install ./sdkmanager_1.9.2-10888_amd64.deb 
sdkmanager

安装成功并打开。

这个时候就开始出现问题了:

说我的地区有年龄限制不能使用。这就很离谱了,中文也找不到解决办法。于是geogle后在论坛看到有人说需要挂vpn,还有人说挂新加坡vpn后好了。由于我本来就挂着vpn,于是换成新加坡,还是不行。后来又安装另了一个版本的sdkmanager1.6登陆,还是一样的问题。

最后无奈打开nvidia官网,登陆个人账号,找有关于年龄的地方但并未找到,忘了点了什么(好像是换了语言?)突然弹出来了个人信息填写,要填写名称和出生日期,于是我填了1990,保存信息。重新在PC端虚拟机尝试log in。登陆成功。。。

这时候又开始出现了一个常见问题:

opps!No sdks are available for your account

于是将1.6版本卸载,又换成1.9.2版本。

使用

#卸载命令
sudo apt-get --purge remove sdkmanager 
#后面版本号换成你下载的文件版本
sudo apt install ./sdkmanager_1.9.2-10888_amd64.deb 

重新打开sdkmanager。登陆成功。

按照这个教程的第三部分进行安装,我选择的是jetpack4.6.3,目前tx2支持的最新版。步骤bu zhoubu zhobu zhbu zbubTX2超详细,超有用的刷机教程_tx2刷机_进击的少年_光华的博客-CSDN博客

刷机完成后,使用下列指令检查是否刷机成功,若成功会出现仿真界面。

 cd /usr/local/cuda-10.0/samples/5_Simulations/oceanFFT & sudo make & ./oceanFFT

检查一下板载摄像头是否能使用:(若退出在终端输入q回车)

~$ nvgstcapture-1.0 --cus-prev-res = a*b
此处的a,b代表屏幕分辨率,我个人推荐a=1280,b=720,从别的博主那里剽来的

二、 给tx2安装pytorch

参考这篇博客:

https://blog.csdn.net/m0_62013374/article/details/125736316

1.下载TX2专用torch包(.whl)
https://link.csdn.net/?target=https%3A%2F%2Fforums.developer.nvidia.com%2Ft%2Fpytorch-for-jetson-version-1-10-now-available%2F72048
我下载的torch1.10。(我使用ubuntu和macos都下载不下来,参考上面博客后使用windows先下载,再用u盘拷到tx2的文件中)

#我下载的whl文件名为:torch-1.10.0-cp36-cp36m-linux_aarch64.whl
sudo apt-get install python3-pip libopenblas-base libopenmpi-dev libomp-dev
pip3 install Cython
pip3 install numpy torch-1.10.0-cp36-cp36m-linux_aarch64.whl #Permission denied就加sudo

2.安装torchvision

   torch和torchvision对应关系:

sudo apt-get install libjpeg-dev zlib1g-dev libpython3-dev libavcodec-dev libavformat-dev libswscale-dev
pip3 install setuptools #这个官方教程没写
git clone --branch v0.11.1 https://github.com/pytorch/vision torchvision 
cd torchvision
 
sudo python3 setup.py install
 
cd ../
pip3 install 'pillow<7'

输入以下代码检验是否安装成功:

import torch
print(torch.__version__)
import torchvision
print (torchvision.__version)
print(torch.cuda.is_available_)

得到两个版本号,一个true。

 3.TX2配置yolov5环境

将训练好的yolov5模型通过u盘复制到tx2上。

TX2参照下方代码安装所需库:

sudo apt-get install liblapack-dev
sudo apt-get install libblas-dev
sudo apt-get install gfortran	
sudo apt-get install libssl-dev libffi-dev python-dev build-essential libxml2-dev libxslt1-dev

pip3 install scipy
pip3 install matplotlib pillow pyyaml tensorboard tqdm 
#安装seaborn时会自动安装matplotlib、pandas、numpy、pandas、spicy
pip3 install seaborn
pip3 install psutil
python3 detect.py #看看还缺啥

按照以上代码始终安装不上seaborn和matplotlib,查询资料及查看报错信息后输入以下代码重新安装(中间还更新了pip):

sudo apt-get install libpng-dev
sudo apt-get install libfreetype6-dev
sudo apt-get install pkg-config
pip3 install 'matplotlib<3.0'
pip3 install seaboard

终于成功运行detect.py。

上述过程如果安装过慢可以打开tx2终端换源。(Jetson TX2 是ARM架构,源和x86版本要区分开,链接中间带ubuntu-ports的是tx2用的源,只写ubuntu是pc用的,别弄混了。)

sudo cp /etc/apt/sources.list /etc/apt/sources.list.backup  # backup
sudo gedit /etc/apt/sources.list

打开的文件中内容删除,输入:(这里使用清华源未成功,提示无法定位软件包。建议阿里源,将下面的mirrors.tuna.tsinghua.edu.cn全部换成:mirrors.ailiyun.com

deb http://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-updates main restricted universe multiverse
deb-src http://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-updates main restricted universe multiverse
deb http://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-security main restricted universe multiverse
deb-src http://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-security main restricted universe multiverse
deb http://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-backports main restricted universe multiverse
deb-src http://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-backports main restricted universe multiverse
deb http://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic main universe restricted
deb-src http://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic main universe restricted

改为阿里源后更新一下。

sudo apt-get update
sudo apt-get upgrade

由于第一次接触+网速实在不好,整个部署过程很漫长,遂在等下载过程中写了这篇博客,第一次写博客,断断续续记录下来,有些步骤可能写的不是很详细,望见谅。

要在Jetson TX2部署YoloV5,可以按照以下步骤进行: 1. 安装JetPack:JetPack是NVIDIA Jetson平台的软件开发工具包,它包括Jetson操作系统、CUDA、cuDNN等必要软件。在Jetson TX2部署YoloV5前,需要首先安装JetPack。 2. 安装依赖库:在Jetson TX2上运行YoloV5需要安装一些依赖库,例如OpenCV、PyTorch等。可以使用以下命令安装: ``` sudo apt-get update sudo apt-get install -y python3-pip libjpeg-dev libtiff5-dev libpng-dev libavcodec-dev libavformat-dev libswscale-dev libv4l-dev libxvidcore-dev libx264-dev libgtk-3-dev libatlas-base-dev gfortran python3-dev python3-numpy python3-opencv python3-torch ``` 3. 下载YoloV5代码:可以使用以下命令将YoloV5代码克隆到Jetson TX2上: ``` git clone https://github.com/ultralytics/yolov5.git ``` 4. 下载模型权重文件:YoloV5模型权重文件可以在YoloV5官方网站上下载。将下载的权重文件存放在yolov5目录下的weights文件夹中。 5. 运行YoloV5:使用以下命令运行YoloV5: ``` cd yolov5 python3 detect.py --weights weights/yolov5s.pt --img 640 --conf 0.25 --source 0 ``` 其中,--weights参数指定了模型权重文件路径,--img参数指定了输入图像大小,--conf参数指定了置信度阈值,--source参数指定了输入源,可以是摄像头、视频文件或图像文件。 以上是在Jetson TX2部署YoloV5的基本步骤,具体操作可能会因环境配置、软件本等原因而有所不同。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值